

Towards a Unified Predictive Maintenance System -A Use Case in Cold Rolling Steel Straps

Karl Hribernik

BIBA - Bremer Institut für Produktion und Logistik GmbH

Stathis Anastasiou

M.J. MAILLIS S.A.

Workshop on Predictive Maintenance Philips, Drachten, NL, 24.01.19

Agenda

1. Introduction to the UPTIME Project

- The UPTIME Approach
- The UPTIME Solution
- The UPTIME Components
- Industrial Use Cases Overview

2. Cold Rolling Steel Straps Business Case

- Presentation of Maillis Group
- Introduction to Steel Strap Production
- Objectives of the Business Case
- UPTIME Implementation Progress

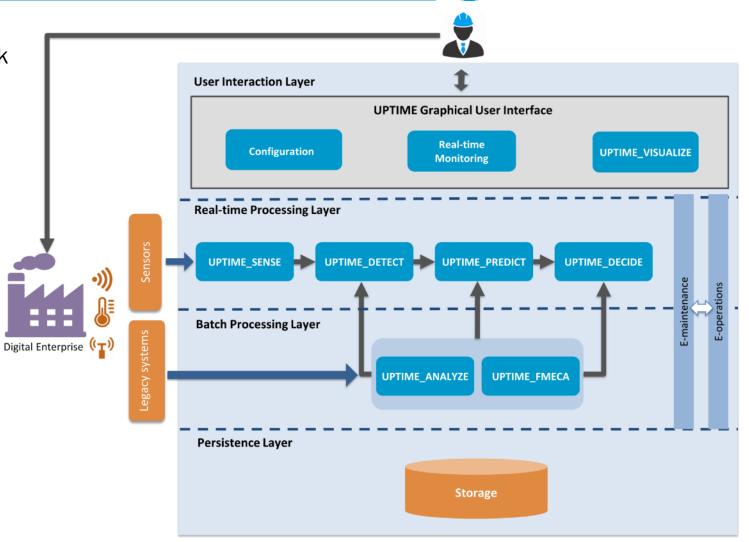
3. Next Steps

General Information

DUPTIME

	Phase I	Phase II	Phase III	Phase IV	Phase V
Predictive Maintenance	Signal Processing	Diagnosis	Prognosis (Failure Mode Analysis)	Decision Making	
Proactive Computing		Detect	Predict	Decide	Act
Industrial Analytics Maturity	Monitor	Diagnose and Control	Manage	Optimise	
MIMOSA OSA-CBM (ISO 13374)	S1 - Data Acquistion S2 - Data Manipulation	S3 - State Detection S4 - Health Assessment	S5 - Prognosis Assessment	S6 - Advisory Generation	
UNIFIED					
PREDICTIVE SENSE		DETECT PREDICT		DECIDE	MAINTENANCE
MAINTENANCE		STAKEHOLDERS			
CONCEPT					

Definition of UPTIME unified predictive maintenance concept


- ISO 13374 as implemented by MIMOSA OSA-CBM, RAMI4.0 for compliance with Industry 4.0 standards
- Phases of predictive maintenance and proactive computing
- Phases of industrial analytics maturity

The UPTIME Solution

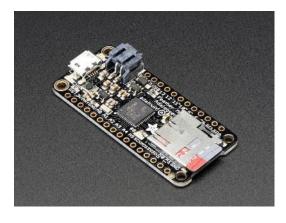
- UPTIME_SENSE serves as a modular data acquisition and integration device framework [An extension of BIBA's USG]
- UPTIME_DETECT and UPTIME_PREDICT detect and predict the state of a system [An extension of BIBA's preInO]
- UPTIME_DECIDE proactively recommends maintenance actions and the plans [An extension of ICCS's PANDDA]
- UPTIME_VISUALISE aggregates data, analyses and visualizes it [An extension of Pumacy's SeaBAR]
- UPTIME FMECA identifies failure modes, effects and criticalities based on the data [An extension of RINA's DRIFT]

+ UPTIME ANALYZE [A new tool developed by Suite5]

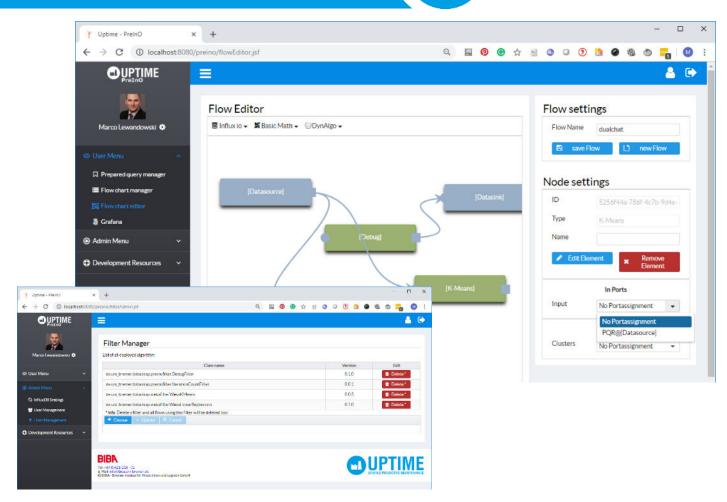
24.01.19

Simplified view of the UPTIME draft architecture

Karl Hribernik & Stathis Anastasiou

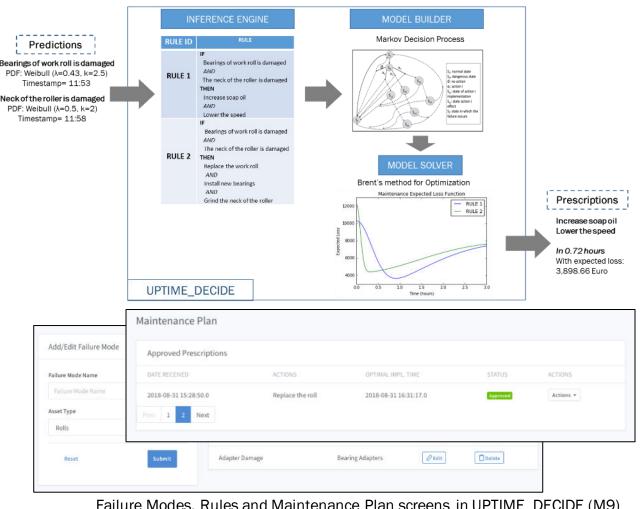

5

- Prototype development platform for designing and testing dedicated hardware solution
- Used for test data acquisition in customer approval process
- Low-power solution required for flight approval
- Based on Texas Instruments SimpleLink CC2650 SensorTag
 - BLE (Bluetooth low energy)
 - Sensor Controller
 - Micro Controller
 - Environment & motion sensors
 - Adalogger MO Feather
 - **GPS** Shield
 - SD Card storage



Flexible state detection and prediction engine:

- Graphical flow editor
 - Create custom flows
 - Save and load existing flows
- Extensible algorithm library
 - Plug-in system for algorithms
 - Definition of own algorithms
- Flexible trigger mechanisms
 - Automated recurring flow triggers
 - **Event-based triggers**
- Output & export analysis results
 - To influx database (UPTIME persistence module)
 - To other UPTIME modules (e.g. DECIDE)

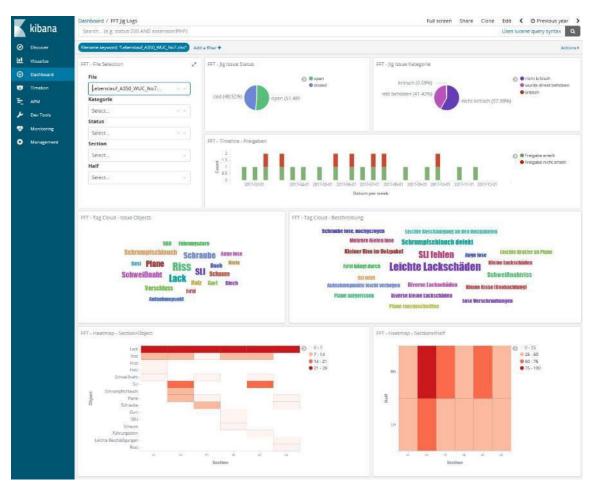


Flow Editor and Filter/Algorithm Management screens in UPTIME_DETECT/PREDICT (M9)

SENSE	DETECT/PREDICT	DECIDE	VISUALISE	FMECA	ANALYSE
24.01.19		Karl Hribernik &	Stathis Anastasiou		7

DECIDE Prototype

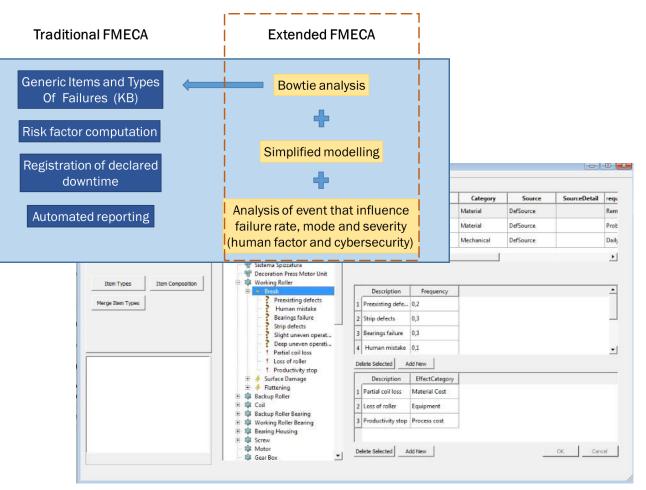
- Generates actionable maintenance recommendations
- Incorporates predictive analytics output
- Utilizes artificial intelligence, optimization algorithms and expert systems in a probabilistic context
- Provides adaptive, automated, constrained, time-dependent and optimal decisions



Failure Modes, Rules and Maintenance Plan screens in UPTIME_DECIDE (M9)

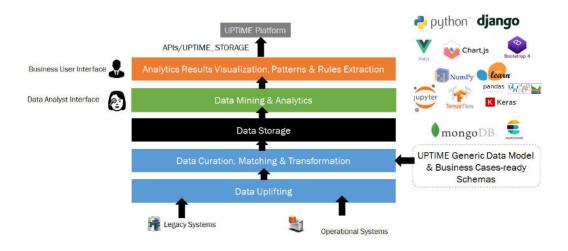
UPTIME visualisation dashboard

- One-stop-shop for all UPTIME visualisation needs
 - Integration of UPTIME UI widgets into one web-based dashboard
 - Single sign-in
 - Roles and rights management
- Stakeholder-specific views
 - Deep visualisation and customisation options
 - Intuitive data analysis
- Prototype visualisation of use case data test campaign
 - Limited amount of test campaign data

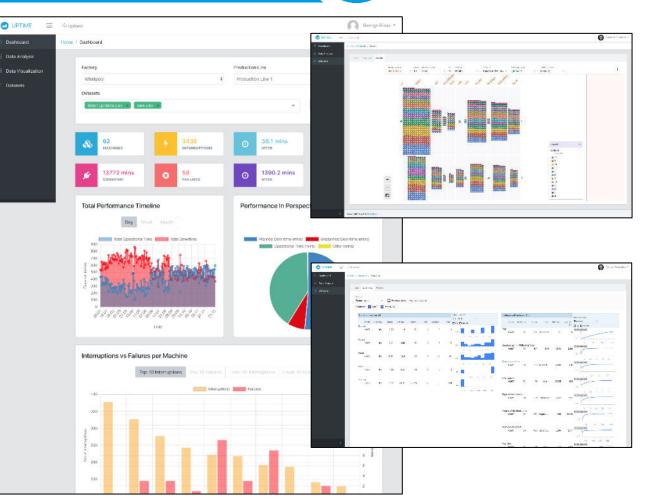


UPTIME_VISUALISE dashboard prototype (M9)

SENSE	DETECT/PREDICT	DECIDE	VISUALISE	FMECA	ANALYSE
24.01.19		Karl Hribernik & St	rathis Anastasiou		9


DUPTIME

- Dynamic risk monitoring based on bowtie analysis
- Prevention and mitigation measures consider
 - DETECT/PREDICT alerts and prognoses
 - **DECIDE** prevention measures
- Failure mode probability takes into account
 - Historical data analysis (ANALYSE)
 - **DETECT/PREDICT** prognoses
- Effect criticality considers
 - Maintenance reports from **DECIDE**
 - Analysis of historical data from ANALYSE



Extended FMECA concept/Prototype UPTIME_FMECA component (M12)

24.01.19		Karl Hribernik &	Stathis Anastasiou		10
SENSE	DETECT/PREDICT	DECIDE	VISUALISE	FMECA	ANALYSE

- Interoperability with and analysis of historical maintenance data
- Make historical maintenance data available to other UPTIME components
- Semantic uplift to UPTIME data model
- Data mining and analytics
- Deep and flexible visualisation

UPTIME ANALYSE dashboard, dataset facets and dataset navigator screens (M9)

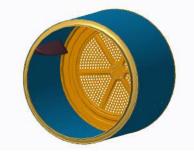
24.01.19			Stathis Anastasiou		14
SENSE	DETECT/PREDICT	DECIDE	VISUALISE	FMECA	ANALYSE

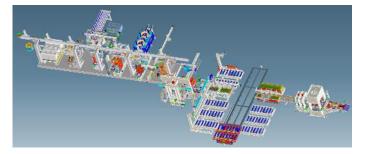
Industrial Use Cases

Selected Key Characteristics

- Clothes dryer drum production line
- Complex production processes with many datapoints and large volumes of data
- Sensor topology and IT ecosystem in place

Selected Key Requirements


- Inclusion of historic data and operational data in analysis process.
- Integration with existing sensor topology and IT ecosystem necessary (e.g. SAP-PM)
- Integration with existing FMECA models via UPTIME_FMECA


Selected Goals

- Automatically generate warnings, actionable maintenance orders
- OEE average improves from 82% to 87%
- 10% reduction of MTTR
- 30% increase of MTBF
- 25% reduction of Total Cost of Maintenance

Clothes dryer drum production line in Lodz, Poland

Whirlpool

Clothes dryer drum

Drum production line model

Home Appliances

Steel Industry

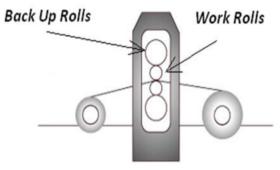
Aeronautics Production Logistics

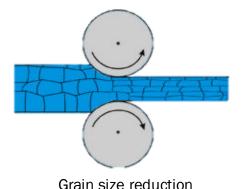
24.01.19

Karl Hribernik & Stathis Anastasiou

Industrial Use Cases

Selected Key Characteristics


- High-wear work rolls in cold rolling of steel tape
- Rolls need to be replaced regularly
- Product quality loss if rolls not maintained properly
- Downtime in production due to scheduled replacement of rolls


Selected Key Requirements

- Maximise operation time of equipment via condition monitoring.
- Improve quality of the product.
- Analyse fault reasons and find effective solutions.
- Maintenance strategy leading to improved production system.
- Reduction of maintenance and thus production costs.

Selected Goals

- Maximization of Utilization Ratio: 10%
- Increase of MTBF (meantime between failure): 20%
- Quality improvement of created products: 10%
- OEE improvement: 20%
- Reduction of total maintenance cost: 15%
- Reduction of production loss: 5%
- Maximization of Rollers' Mean Life: 10%

M. J. MAILLIS GROUP

YOUR END-OF-LINE PARTNER

Roll mill stand

Work rolls

Worn work roll

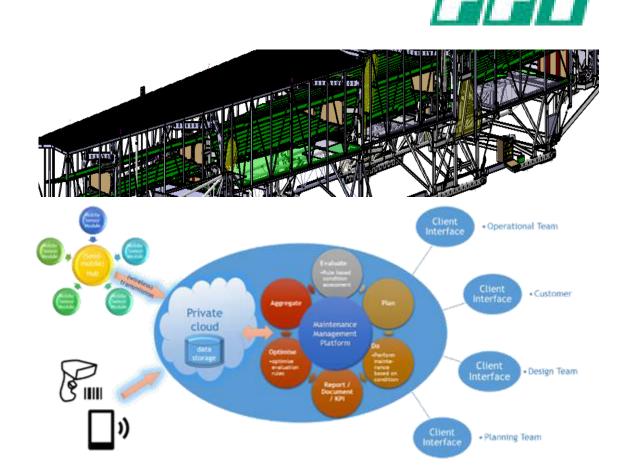
Home Appliances

Steel Industry

Aeronautics Production Logistics

Industrial Use Cases

Selected Key Characteristics


- Wing cover transport jig for aeronautics industry
- 40m aluminium jig used in land, sea and air transport
- Transport and environmental conditions affect asset health

Selected Key Requirements

- Obtain (near-) real-time health-metrics
- Automatic analysis of status for actionable health assessment
- Access and assess historical data for failure cause analysis and design improvements
- Role-based views/access to TJ status for different stakeholders
- Manage data for larger numbers of assets

Selected Goals

- Increase availability of transportation jigs
- Cont. access to operational status and availability prediction
- Scalability to large numbers of assets

Aeronautics Production Logistics

Home Appliances

16-18.10.18

Karl Hribernik & Stathis Anastasiou

Steel Industry

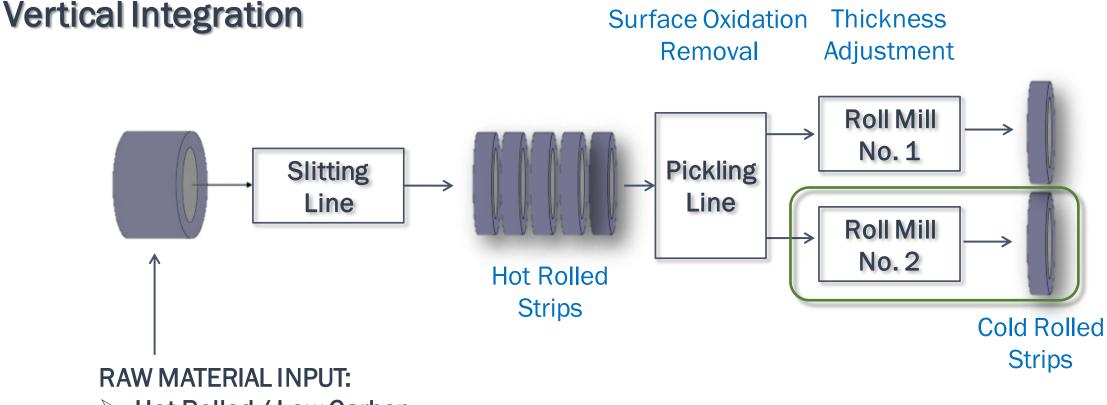
Short Presentation of Maillis Group

M.J. Maillis was established as a producer of steel tapes in 1968. Nowadays Maillis Group manufactures and provides complete secondary packaging systems, machines and packaging materials in strapping, wrapping and carton sealing industries, including hand strapping tools. The Group operates in 18 countries throughout Europe, North America and Asia.

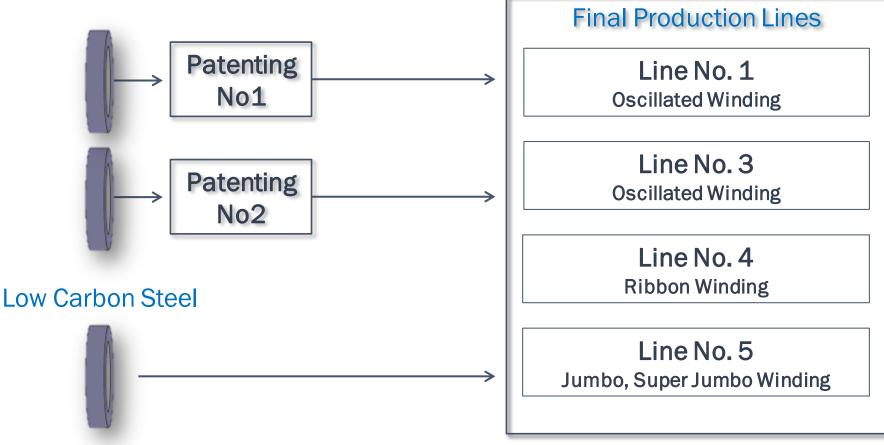
- Over 1.500 employees
- Over 15.000 customers
- 18 subsidiaries
- 6 manufacturing plants

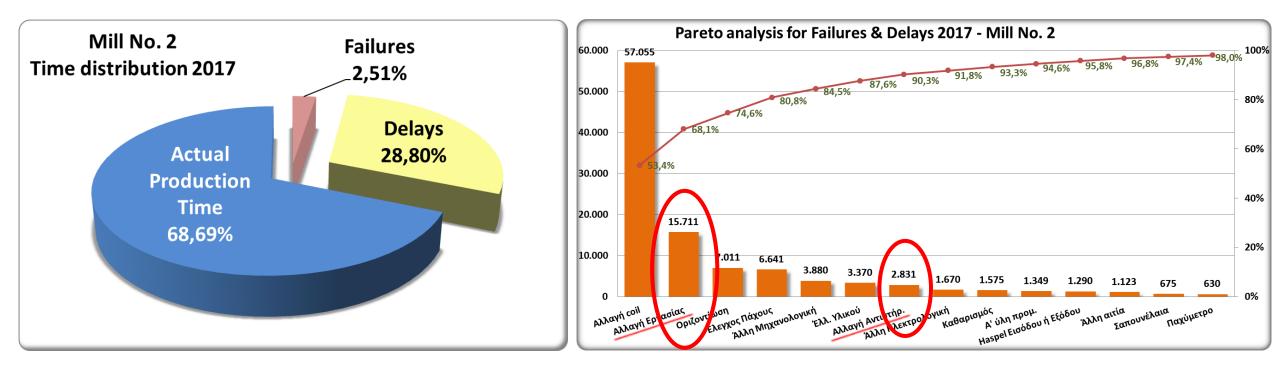
M.J. MAILLIS S.A. Manufacturing Unit in Greece (Inofyta Viotias)

Establishment of the Plant Installation (steel strap production)


|--|

From Raw Material to Final Products


Steel Strap Production Semi Finished DPTIME


- Hot Rolled / Low Carbon
- Hot Rolled / Medium Carbon
- Cold Rolled / Low Carbon

Steel Strap Production Finished

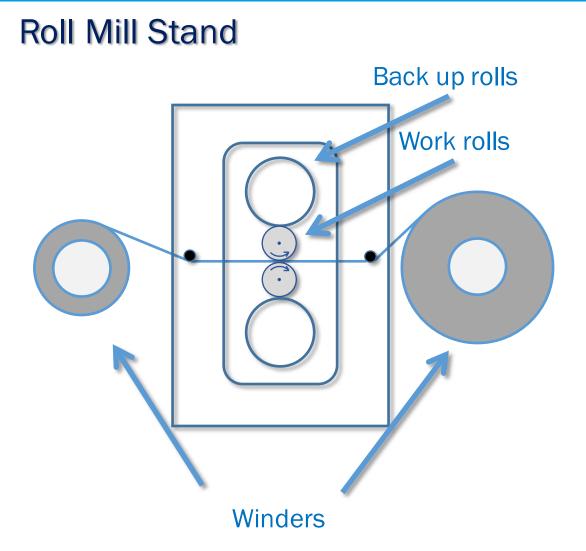
Medium Carbon Steel

Mill No. 2 Time Distribution - Time

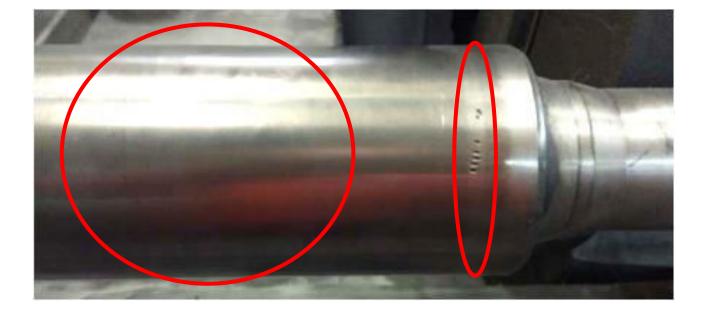
Purpose and Objectives

MAILLIS Business Case lines to produce rolling products with the closest possible thickness tolerances and an excellent surface finish, this means to:

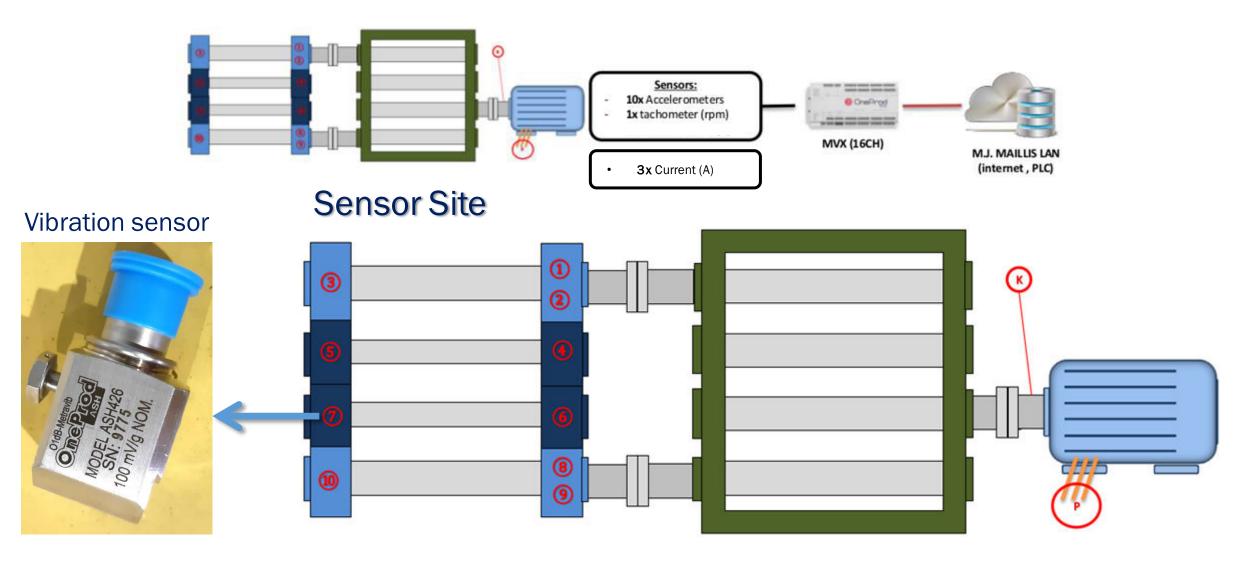
- Have a machine that reports its current health status along with the appropriate data analytics and metrics to identify the degree to which that status deviates from normal or healthy operational mode.
- Have predictions about equipment's future health as well as recommendations for future actions.
- Enable machines perform self-assessment based on which decision-making can be significantly followed to advance equipment maintenance and facilitate the entire products life cycle.
- Facilitate the development of a predictive maintenance strategy which permits increased productivity through transparency and traceability, lower maintenance and repair costs, higher machine availability and enables for cost efficiencies and better quality of products.


Key Performance Indicator	TO-BE Value
Maximization of Utilization Ratio	10%
Increase of MTBF	20%
Quality improvement of the created products	10%
OEE improvement	20%
Reduction of total maintenance cost	15%
Reduction of Production Loss	5%
Maximization of Rollers' Mean Life	10%

Cold Rolling Mill No. 2


Cold Rolling Mill

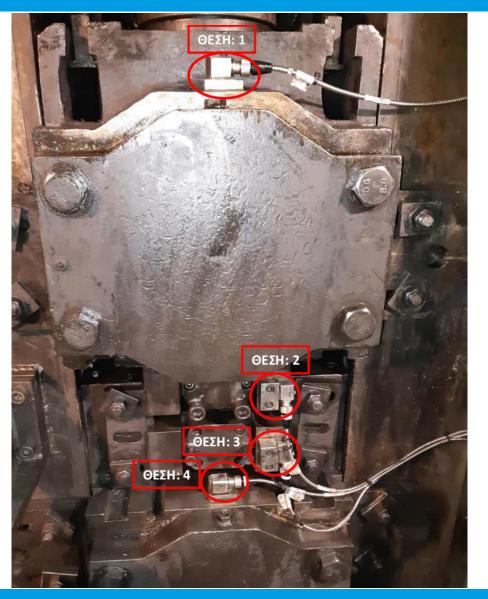
Deforming and Reducing the Grain Size


Wear on Work Roll

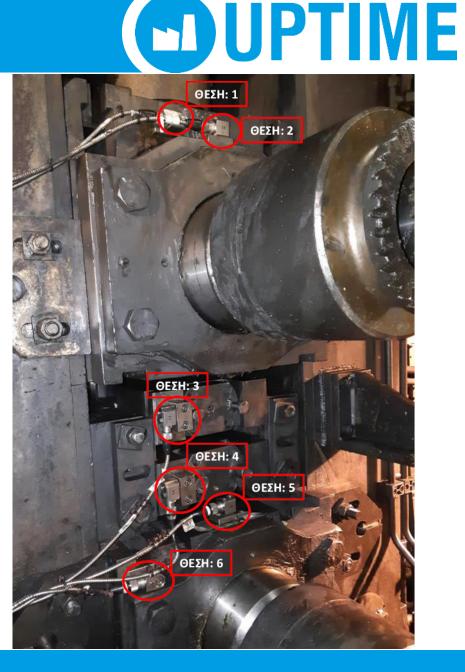
Maintenance Data (Sample Excel File)

_				ПАР	AKONOY	ΥΘΗΣΗ	ΡΑΟΥ/	NΩN	ΕΛΑΣΤΡΟΥ		
	A/A	Ημερομηνία	Διάμετρος (mm)	Αριθμός	Έλαστρο Νο.	Χειριστής	Περάσματα	Υλικό	Αόγος Αλλαγής	Νέα Διάμετρος (mm)	Προμηθευτής
82	1	30/1/2018	125	70015	2	User1	86	HT	Φυσιολογική Φθορά	124,8	Akers
	2	31/1/2018	125	70015	2	User1	54	HT	Φυσιολογική Φθορά	124,6	Akers
	3	1/2/2018	125	70015	2	User2	69	HT	Φυσιολογική Φθορά	124,2	Akers
	4	2/2/2018	125	70015	2	User1	48	HT	Φυσιολογική Φθορά	124,0	Akers
	5	5/2/2018	125	70015	2	User1	39	HT	Φυσιολογική Φθορά	123,8	Akers
	6	6/2/2018	125	70015	2	User4	45	HT	Φυσιολογική Φθορά	123,6	Akers
	7	8/2/2018	125	70015	2	User2	44	HT	Φυσιολογική Φθορά	123,4	Akers
	8	9/2/2018	125	70015	2	User2	38	HT	Φυσιολογική Φθορά	123,2	Akers
	9	16/2/2018	125	70015	2	User1	51	HT	Φυσιολογική Φθορά	123,0	Akers
	10	21/2/2018	125	70015	2	User2	38	HT	Φυσιολογική Φθορά	122,8	Akers
	11	22/2/2018	125	70015	2	User1	57	HT	Φυσιολογική Φθορά	122,6	Akers
	12	6/3/2018	125	70015	2	User4	42	HT	Φυσιολογική Φθορά	122,4	Akers
	13	27/8/2018	125	70015	2	User1	52	HT	Φυσιολογική Φθορά	122,2	Akers
	14	29/8/2018	125	70015	2	User4	12	HT	Φυσιολογική Φθορά	122,0	Akers
	15	3/9/2018	125	70015	2	User1	60	HT	Φυσιολογική Φθορά	118,7	Akers
	16	10/9/2018	125	70015	2	User1	9	HT	Σκάσιμο	118,5	Akers
	17	24/9/2018	125	70015	2	User1	42	HT	Φυσιολογική Φθορά	118,4	Akers
	18	25/9/2018	125	70015	2	User2	68	HT	Φυσιολογική Φθορά	118,2	Akers
	19	26/9/2018	125	70015	2	User4	20	HT	Φυσιολογική Φθορά	117,9	Akers
	20	2/10/2018	125	70015	2	User4	21	HT	Σκάσιμο	117,9	Akers
							895				
83	1	10/9/2018	125	73620	2	User4	36	HT	Φυσιολογική Φθορά	125,0	Akers
	2	11/9/2018	125	73620	2	User1	27	HT	Φυσιολογική Φθορά	124,4	Akers
	3	12/9/2018	125	73620	2	User1	42	HT	Φυσιολογική Φθορά	124,0	Akers
	4	13/9/2018	125	73620	2	Elser4	39	НТ	Φυπιολονική Φθοοά	123.6	Akers

Infrastructure Setup for Sensor Data



Vibration Sensors Description


Sensor ID	Measurement point	Sensor direction	Sensor Type
1	Upper backup roll – DE side	Vertical	Accelerometer
2	Upper backup roll – DE side	Axial	Accelerometer
3	Upper backup roll – NDE side	Vertical	Accelerometer
4	Upper working roll – DE side	Reverse horizontal	Accelerometer
5	Upper working roll – NDE side	Horizontal	Accelerometer
6	Down working roll – DE side	Reverse horizontal	Accelerometer
7	Down working roll – NDE side	Horizontal	Accelerometer
8	Down backup roll – DE side	Vertical	Accelerometer
9	Down backup roll – DE side	Axial	Accelerometer
10	Down backup roll – NDE side	Vertical	Accelerometer

Position of Sensors on Rollers

Front view of rollers:

Rear view of rollers:

-5

-10

18.11.2018 03:05:00

18.11.2018 03:10:00

18.11.2018 03:15:00

18.11.2018 03:20:00

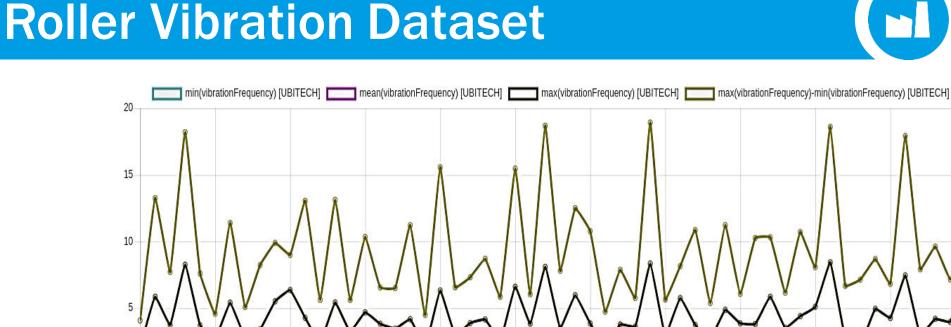
18.11.2018 03:25:00

-15-+ 18.11.2018 03:00:00

18.11.2018 03:35:00

18.11.2018 03:30:00

18.11.2018 03:45:00


18.11.2018 03:50:00

18.11.2018 03:55:00

18.11.2018 04:00:00

18.11.2018 03:40:00

Next Steps

New data may be introduced, if it is deemed that may boost the fidelity of the results produced for the MAILLIS Case. All new data will be integrated to the existing infrastructure that can easily be extended to accommodate for new sources of data.

New sensor data can be collected by simply connecting the sensors to the Modbus and by configuring the PLC Data adapter to accommodate for them.

Maintenance and production data are collected through excel files. During course new data may also be integrated to the existing infrastructure.

Next Tasks are following in cooperation with UPTIME partners, within the defined project timetable:

"Data Collection and Infrastructure Setup"

"Deployment of UPTIME and Integration with MAILLIS IT Infrastructure"

"System Evaluation, Learning and Improvement"

Thank You!

This project has received funding from the European Union's Horizon 2020 research and innovation programme *under grant agreement No* 768634

24.01.19

Copyright

Objective:	Novel design and predictive maintenance technologies
------------	--

- Topic: FoF-09-2017
- Call: H2020-F0F-2017
- Lead: BIBA Bremer Institut f
 ür Produktion und Logistik GmbH
- Duration: 36 Months
- Start: 2017/09

The information in this document is provided "as is", and no guarantee or warranty is given that the information is fit for any particular purpose. The consortium members shall have no liability for damages of any kind including without limitation direct, special, indirect, or consequential damages that may result from the use of these materials subject to any liability which is mandatory due to applicable law.

Copyright 2017 – 2020 by the UPTIME Consortium