
Dissemination level: PU Page 1

DELIVERABLE

D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Dissemination level: PU Page 2

Project Acronym: PROPHESY

Grant Agreement number: 766994 (H2020-IND-CE-2016-17/H2020-FOF-2017)

Project Full Title: Platform for rapid deployment of self-configuring and

optimized predictive maintenance services

Project Coordinator: INTRASOFT International SA

DELIVERABLE

D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Dissemination level PU – Public

Type of Document (R) Report / (DEM) Demonstrator

Contractual date of delivery M14, 30/11/2018

Deliverable Leader SENSAP

Status - version, date Final, v1.0, 30/11/2018

WP / Task responsible MODRAGON/SENSAP

Keywords: Data Streaming, Streaming Analytics, Middleware

Infrastructure, Asset Administration Shell

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 3

Executive Summary
This report is part of deliverable D3.7 “PROPHESY-CPS Middleware Infrastructure v1” and

illustrates the prototype implementation of the CPS infrastructure which supports data

streaming and analytics in PROPHESY-CPS. It also accompanies a set of software packages that

realize this implementation. Deliverable D3.7 is therefore devoted to the detailed

specification and prototype implementation of the CPS middleware infrastructure, which

follows principles of the PROPHESY-CPS architecture (D3.1) and adheres to the specification

of the deliverables of WP2.

In particular, starting from the PROPHESY-CPS Detailed Architecture, a more detailed

specification of the middleware infrastructure is provided in terms of the following

functionalities: streaming analytics in local (CPS) and cloud (PdM) level and communication

between them. These functionalities are provided by two subsystems: Asset Administration

Shell (AAS) and Data Streaming subsystem. These two components are designed in a way that

are capable to provide analytics in both CPS and platform (PdM) level.

The AAS links to the communication of CPS with the upper layer such as PROPHESYH-PdM

platform, by providing a standard mechanism for exposing the CPS functionality.

Furthermore, AAS is based on the I4.0 component concept. The I4.0 component can be

defined as a Cyber Physical System (CPS) in the context of the RAMI4.0. AAS is the virtual

representation of the asset. The AAS is composed by a Manifest and a Component Manager.

The Manifest aggregates information about identification, data and functionalities exposed

while the Component Manager is responsible to administer the models within the Manifest

as well as to link the information in the AAS to both physical and cyber worlds. In such a way,

the Component Manager includes two interfaces, namely a northbound interface (NBI) and a

southbound interface (SBI). The former provides a uniform Application Programming

Interface (API) that receives and send data in a strict and coherent format.

On the other hand, the Data Streaming subsystem links to the data streaming analytics both

in PROPHESY-CPS and PROPHESY-PdM level. Data streaming consists of three components:

“Streaming Gateway”, “Message Translating & Routing Service” and finally “CPS/Asset

Registry”. Asset/CPS Registry provides a discoverability mechanism internal the CPS for the

available streams and analytics. Furthermore, in platform level is enhanced with CPS

discoverability functionalities. Streaming Gateway provides a communication Interface with

AAS in order to receive external requests for data streaming or commands. Finally, Message

Translating and Routing Service, is responsible for creating data flows from the data sources

to analytics processors, in order to support data analytics in CPS level. The Message

Translating and Routing Service provides also cloud analytics in PdM level. The only difference

in platform level is that data streams are provided by AAS.

Note that the present version of the deliverable represents the first release of the CPS

middleware infrastructure, while a second and final release will be provided as part of D3.8.

The final release will provide a complete implementation AAS and Data Streaming

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 4

subsystems, including relevant tools. It will also incorporate feedback received during the

integration of the prototypes with other components, as well as feedback from the use of the

middleware infrastructure in the PROPHESY use cases implementation.

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 5

Deliverable Leader: SENSAP

Contributors: ART, NOVA FCT, NOVA ID, UNPARALLEL

Reviewers: AIT, INTRA

Approved by: INTRA

Document History

Version Date Contributor(s) Description

V0.1 12/10/2018 SENSAP Initial structure of the document

V0.2 25/10/2018 NOVA ID Chapter 2

V0.3 1/11/2018 UNPARALLEL Chapter 4

V0.4 8/11/2018 SENSAP Chapter 3

V0.5 10/11/2018 NOVA ID Chapter 6

V0.6 15/11/2018 SENSAP Chapter 5

V0.7 24/11/2018 NOVA ID Contribution in chapter 3,4

V0.75 26/11/2018 UNPARALLEL Contribution in chapter 2, 6

V0.8 26/11/2018 SENSAP Contribution in chapter 3, 6

V0.9 27/11/2018
ART, UNPARALLEL,

NOVA ID, SENSAP
Comments

V0.95 28/11/2018 AIT, INTRA Review

V1.0 30/11/2018 SENSAP Final version

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 6

Table of Contents
EXECUTIVE SUMMARY ... 3

TABLE OF CONTENTS .. 6

TABLE OF FIGURES ... 8

LIST OF TABLES .. 8

DEFINITIONS, ACRONYMS AND ABBREVIATIONS ... 9

1 INTRODUCTION .. 10

1.1 PROPHESY ... 10
1.1.1 The PROPHESY Vision .. 10
1.1.2 PROPHESY WP3 Overview ... 11

1.2 PURPOSE ... 11
1.3 DOCUMENT STRUCTURE ... 12

2 BACKGROUND INFORMATION .. 13

2.1 PROPHESY-CPS LOGICAL ARCHITECTURE .. 13
2.2 SUPPORTING TECHNOLOGIES, FRAMEWORKS, STANDARDS AND IMPLEMENTATIONS .. 14

2.2.1 REST-Web Services .. 14
2.2.2 Integration Middleware .. 14
2.2.3 Data Representation and Exchange .. 16
2.2.4 Far-Edge .. 17
2.2.5 Human-Machine Interface .. 18
2.2.6 Messaging Integration patterns ... 18

3 OVERVIEW OF PROPHESY-CPS MIDDLEWARE INFRASTRUCTURE ELEMENTS .. 21

3.1 MIDDLEWARE INFRASTRUCTURE ARCHITECTURE .. 21
3.1.1 Key functionality of middleware infrastructure. ... 21
3.1.2 Middleware Infrastructure in CPS level ... 23
3.1.3 Cloud Integration .. 23

3.2 ASSET ADMINISTRATION SHELL .. 24
3.3 DATA STREAMING ... 25

4 ASSET ADMINISTRATION SHELL .. 27

4.1 CONCEPTUAL OVERVIEW ... 27
4.1.1 Conceptual View of a Service-Oriented Device Architecture (SODA) .. 28

4.2 SOFTWARE MODULES/COMPONENTS ... 29
4.2.1 Layered Organization .. 29
4.2.2 Manifest .. 30
4.2.3 Component manager .. 34

5 DATA STREAMING IN CPS AND CLOUD ... 39

5.1 MAIN CONCEPT ... 39
5.1.1 Adopted messaging patters .. 40
5.1.2 Definitions from digital models (according to deliverable D3.3) .. 42

5.2 COMPONENTS OF DATA STREAMING SUB-SYSTEM ... 43
5.2.1 Asset Registry .. 43
5.2.2 Streaming Gateway .. 45
5.2.3 Message Translating and routing Service ... 45

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 7

5.3 PROTOTYPE IMPLEMENTATION ... 49
5.3.1 Source Code Availability .. 49
5.3.2 Docker Availability .. 49

6 USE CASES .. 50

6.1 USE CASE#1: REQUEST/SUBSCRIBE SUB-MODEL ... 50
6.1.1 Narrative of Use Case: Data Flow Diagrams ... 51

6.2 USE CASE#2: INSTALL A NEW ANALYTICS PROCESSOR ... 52

7 REFERENCES ... 53

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 8

Table of Figures
FIGURE 1: PROPHESY-CPS LOGICAL ARCHITECTURE [/REF DELIVERABLE D2.1] ... 13
FIGURE 2: PRODUCER/CONSUMER PERFORMANCE COMPARISON [1] ... 15
FIGURE 3: THROUGHPUT PERFORMANCE COMPARISON [2] .. 16
FIGURE 4: MESSAGING INTEGRATION PATTERNS. SOURCE: [5] .. 19
FIGURE 5: PROPHESY-CPS LOGICAL ARCHITECTURE BASED ON D3.1 .. 21
FIGURE 6: AAS AND DATA STREAMING SUBSYSTEMS OF MIDDLEWARE INFRASTRUCTURE ... 23
FIGURE 7: CLOUD INTEGRATION OF DATA STREAMING ANALYTICS .. 24
FIGURE 8: THE I4.0 COMPONENT LOGICAL REPRESENTATION [7] .. 27
FIGURE 9: AAS EXAMPLE NETWORK ... 28
FIGURE 10: AAS TO PROPHESY-PDM PLATFORM EXAMPLE NETWORK ... 29
FIGURE 11: AAS LAYERED ORGANIZATION AND TECHNICAL ENVIRONMENT .. 29
FIGURE 12: ASSET ADMINISTRATION SHELL CORE STRUCTURING MODEL BASED ON [8] .. 30
FIGURE 13:OVERVIEW OF THE MANIFEST STRUCTURE (CAEX FILE) ... 32
FIGURE 14: OVERVIEW OF THE MANIFEST STRUCTURE POPULATED WITH TWO SUB-MODELS (CAEX FILE) 33
FIGURE 15: FACADE SOFTWARE DESIGN PATTERN ... 36
FIGURE 16: DATA STREAMING COMPONENT ARCHITECTURE... 39
FIGURE 17: BASIC CONCEPT OF MESSAGING SOURCE: [10] .. 40
FIGURE 18: TO THE LEFT, POINT TO POINT CHANNEL AND TO THE RIGHT, PUBLISH SUBSCRIBE CHANNEL SOURCE: [11] 41
FIGURE 19: MESSAGING ENDPOINTS, SOURCE: [12] .. 42
FIGURE 20: DEVICE REGISTRATION SEQUENCE DIAGRAMS: A) REGISTER AND B) UNREGISTER .. 44
FIGURE 21: ANALYTICS DATA ROUTING EXAMPLE ... 46
FIGURE 22: MESSAGE TRANSLATING AND ROUTING SERVICE ... 47
FIGURE 23: CREATE A NEW DATA FLOW FOR ANALYTICS: SEQUENCE DIAGRAM ... 48
FIGURE 24: EXECUTE A DATA FLOW ... 48
FIGURE 25: SUBSCRIBE OF A SUB-MODEL ... 51
FIGURE 26: SUBSCRIBE OF A SUB-MODEL ... 51

List of Tables
TABLE 1: SAMPLE URI AND RELATED DESCRIPTION ... 14
TABLE 2: HTTP METHODS AND ACTION DESCRIPTION ON THE RESOURCE .. 14
TABLE 3: SUMMARY OF SPECIFICATIONS OF MIDDLEWARE INFRASTRUCTURE .. 22
TABLE 4: AAS COMPONENTS IN A SUMMARY VIEW .. 25
TABLE 5: DATA STREAMING COMPONENTS IN A SUMMARY VIEW .. 26
TABLE 6: CONSIDERED DATA FIELDS FOR PROPERTIES DEFINITION AND CHARACTERIZATION BASED ON [7] 31
TABLE 7: EXTERNAL INTERFACE EXPOSED CAPABILITIES/FUNCTIONALITIES (VIA RESTFUL) .. 34
TABLE 8: EXTERNAL INTERFACE EXPOSED CAPABILITIES/FUNCTIONALITIES (VIA TELEGRAM) ... 35
TABLE 9: EVALUATION FACTORS ... 37

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 9

Definitions, Acronyms and Abbreviations
Acronym/

Abbreviation
Title

AAS Asset Administration Shell

AM Analytics orchestrator Manifest

API Application Programming Interface

AR Augmented Reality

CAEX Computer Aided Engineering eXchange

CPS Cyber Physical System

CRUD Create, Read, Update and Delete

DDA Distributed Data Analytics

DoA Description of Action

DSM Data Source Manifest

EAE Edge Analytics Engine

ECI Edge Computing Infrastructure

HF-ML High Frequency Machine Learning

HTTP Hyper Text Transfer Protocol

KPI Key Performance Indicators

LF-ML Low Frequency Machine Learning

MOM Message-Oriented Middleware

NBI North-Bound Interface

OEE Overall Equipment Effectiveness

OOP Object Oriented Programming

OPC Open Platform Communications

OPC-UA OPC Unified Architecture

PM Processor Manifest

PO Processor Orchestrator

RAMI Reference Architectural Model Industrie

REST Representational State Transfer

RPC Remote Procedure Call

RUL Remaining Useful Life

SBI South-Bound Interface

SODA Service-Oriented Device Architecture

URI Unique Resource Identifiers

VoIP Voice over IP

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 10

1 Introduction
1.1 PROPHESY

1.1.1 The PROPHESY Vision

Despite the proclaimed benefits of predictive maintenance (PdM), the majority of

manufacturers are still disposing with preventive and condition-based maintenance

approaches, which result in suboptimal OEE (Overall Equipment Effectiveness). This is mainly

due to the challenges of predictive maintenance deployments, including the fragmentation

of the various maintenance related datasets (i.e. data “silos”), the lack of solutions that

combine multiple sensing modalities for maintenance based on advanced predictive analytics,

the fact that early predictive maintenance solutions do not close the loop to the production

as part of an integrated approach, the limited exploitation of advanced training and

visualization modalities for predictive maintenance (such as the use of Augmented Reality

(AR) technologies), as well as the lack of validated business models for the deployment of

predictive maintenance solutions to the benefit of all stakeholders. The main goal of

PROPHESY is to lower the deployment barriers for advanced and intelligence predictive

maintenance solutions, through developing and validating (in factories) novel technologies

that address the above-listed challenges.

In order to alleviate the fragmentation of datasets and to close the loop to the field, PROPHESY

will specify a novel CPS (Cyber Physical System) platform for predictive maintenance, which

shall provide the means for diverse data collection, consolidation and interoperability, while

at the same time supporting digital automation functions that will close the loop to the field

and will enable “autonomous” maintenance functionalities. The project’s CPS platform is

conveniently called PROPHESY-CPS and is developed in the scope of WP3 of the project.

In order to exploit multiple sensing modalities for timely and accurate predictions of

maintenance parameters (e.g., RUL (Remaining Useful Life)), PROPHESY will employ advanced

predictive analytics which shall operate over data collected from multiple sensors, machines,

devices, enterprise systems and maintenance-related databases (e.g., asset management

databases). Moreover, PROPHESY will provide tools that will facilitate the development and

deployment of its library of advanced analytics algorithms. The analytics tools and techniques

of the project will be bundled together in a toolbox that is coined PROPHESY-ML and is

developed in WP4 of the project.

In order to leverage the benefits of advanced training and visualization for maintenance,

including increased efficiency and safety of human-in-the-loop processes the project will take

advantage of an Augmented Reality (AR) platform. The AR platform will be customized for use

in maintenance scenarios with particular emphasis on remote maintenance. It will be also

combined with a number of visualization technologies such as ergonomic dashboards, as a

means of enhancing worker’s support and safety. The project’s AR platform is conveniently

called PROPHESY-AR.

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 11

In order to develop and validate viable business models for predictive maintenance

deployments, the project will explore optimal deployment of configurations of turn-key

solutions, notably solutions that comprise multiple components and technologies of the

PROPHESY project (e.g., data collection, data analytics, data visualization and AR components

in an integrated solution). The project will provide the means for evaluating such

configurations against various business and maintenance criteria, based on corresponding,

relevant KPIs (Key Performance Indicators). PROPHESY’s tools for developing and evaluating

alternative deployment configurations form the project service optimization engine, which

we call PROPHESY-SOE.

1.1.2 PROPHESY WP3 Overview

PROPHESY’s WP3 is devoted to the implementation and delivery of the PROPHESY-CPS

platform, which will be based on the MANTIS1 reference architecture and be optimized for

Predictive Maintenance (PdM) services. The implementation is driven by the relevant

specifications produced in WP2. The main objectives of WP3 are:

• to adapt and instantiate the MANTIS architecture, based on PROPHESY requirements

and specifications,

• to specify digital models and techniques for sharing and interoperability of diverse

maintenance datasets, which reside in different systems and data stores,

• to specify and implement sensors for data collection, including mechanisms for

flexibly accommodating different types of PdM sensing modalities (such as vibration,

oil analysis, imaging, acoustics etc.),

• to provide an implementation of the PROPHESY-CPS platform, including edge devices,

data streaming analytics infrastructures and integration with the cloud,

• to ensure that the PROPHESY-CPS guarantees security and data protection across all

levels of a PdM solution,

• to provide techniques for maintenance-driven processes, through closing the loop

from the maintenance insights to the shop floor, including capabilities for self-

configuring and self-adaptive processes.

1.2 Purpose
Task 3.4 is devoted to the implementation and delivery of the middleware infrastructure that

will support data streaming and analytics in PROPHESY-CPS. Furthermore, this infrastructure

should enable analytics both at the edge and at the cloud layers of the PROPHESY-CPS

solutions.

This document is a living document, which means it will continuously evolve during the two

iterations of the task. It also covers currently known open issues, which might be elaborated

in the next version of this document.

1 MANTIS. Cyber Physical System based Proactive Collaborative Maintenance. A project funded by the ECSEL

Joint Undertaking under grant agreement No 662189. 2015-2018. http://www.mantis-project.eu/

http://www.mantis-project.eu/

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 12

1.3 Document structure
The document structure is as follows:

• Chapter 1 provides an Introduction of the deliverable scope and structure. Also

defines the role of this task to WP3.

• Chapter 2 provides the Background Information which are taken into account to the

design and implementation of CPS Middleware infrastructure. This chapter includes

the connection with specification in D2.1 and available technologies and standards

that are relevant to middleware infrastructure.

• Chapter 3 is an Overview of PROPHESY-CPS Middleware Infrastructure Elements. It

provides an architecture of the middleware infrastructure which is responsible for

data streaming in CPS and cloud level.

• Chapter 4 focuses on describing the structure and functionality of Asset

Administration Shell sub-system. A detailed view of components is presented.

• Chapter 5 analyses the Data Streaming sub-system which is responsible for the data

streaming and analytics.

• Chapter 6 presents a set of validating Use Cases for the middleware infrastructure i.e.

proof-of-concept use cases that can be supported by the middleware infrastructure.

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 13

2 Background Information
2.1 PROPHESY-CPS Logical Architecture
The Figure 1, provides an overview of the PROPHESY-CPS logical architecture, i.e. the core

architectural components and the interactions between them.

Figure 1: PROPHESY-CPS Logical Architecture [/ref deliverable d2.1]

The PROPHESY-CPS – as described in deliverable D2.1 PROPHESY-CPS Specifications v1 – is

the necessary component to enable the implementation of Predictive Maintenance solutions

within the manufacturing company. It facilitates the data extraction, collection, transforming,

loading and analysis – from the physical world – to identify behavioural patterns of the

physical asset in order to predict relevant maintenance events.

The PROPHESY-CPS logical architecture only identify the main functional components and

their relationships, however further details need to be added and discussed in order to move

from a functional description to a detailed description that can be used by developers during

the implementation task.

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 14

2.2 Supporting Technologies, frameworks, standards and

implementations

2.2.1 REST-Web Services

Representational State Transfer (REST) is an architectural style and model that relies on the

web standards such using Hyper Text Transfer Protocol (HTTP) verbs and Unique Resource

Identifiers (URIs). The following principles are the foundation of any REST implementation:

• All the resources are identified by URIs;

• All the resources can have multiple representations;

• All the resources can be accessed/modified/created/deleted by standard HTTP

methods;

• The connections between client and server are stateless.

The design and implementation of the components based on the REST architectural style

follows the following necessary step:

1. Identification of the resource URIs (see Table 1);

2. Identification of the HTTP methods for Create, Read, Update and Delete (CRUD)

operations supported by the resource (see Table 2); and

3. Identify the different representations supported by the resource.

Table 1: Sample URI and related description

URI URI Description

/xxx/yyy/zzz Describe the resource represented by the URI

Table 2: HTTP methods and action description on the resource

HTTP Method URI Action Description

GET
POST
DELETE
PUT

/xxx/yyy/zzz Describe the action taken on
the resource represented by
the URI

2.2.2 Integration Middleware

2.2.2.1 Node Red

Node-RED is a programming tool that is used “wiring” together hardware
devices, APIs and online services in graphical and, thus, very intuitive way.
It provides a browser-based editor that delivers all the necessary
mechanisms for “wiring” together components and services (also called
nodes) while creating execution flows. These flows can be – then –
deployed and executed on the top of node.js.

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 15

The usage of node.js as execution runtime delivers to node-red event-driven, non-blocking
capabilities (inherited from the node.js model) while assuring its execution on low-cost
single-board platforms. Furthermore, node-red relies on a very active and vibrant
community where nodes and flows are constantly uploaded and shared by node-red
developers allowing to extend more and more the node-red capabilities and functionalities.

2.2.2.2 Apache Kafka

The usage of message-oriented middleware (MOM) has become
more and more crucial for designing, building and implementing
Service Oriented Architectures. In this landscape, several
technologies and solutions have been developed that support
sending/receiving messages between distributed systems, i.e.
between distributed application modules that typically run on
heterogenous hardware and software platforms such as ActiveMQ2,
RabbitMQ3, Apache Kafka4, etc.

In particular Apache Kafka is a distributed messaging system written and used by LinkedIn
for web page processing it provides all the necessary mechanisms for designing and
developing distributed streaming platforms and delivers higher performances (in terms of
speed and memory footprint) when compared with Active and RabbitMQ based-solutions
(see Figure 2 and Figure 3). By taking into account the previous experience of the research
and industrial partners – involved in the development of the PROHESY-PdM system – as
well as the higher performances, apache Kafka technology will be adopted for delivering
streaming capabilities in both PROPHESY-CPS and PROPHESY-PdM platform.

Figure 2: Producer/Consumer performance comparison [1]

2 http://activemq.apache.org
3 http://www.rabbitmq.com
4 https://kafka.apache.org

http://activemq.apache.org/
http://www.rabbitmq.com/
https://kafka.apache.org/

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 16

Figure 3: Throughput performance comparison [2]

2.2.3 Data Representation and Exchange

2.2.3.1 IEC 62714 AutomationML5

AutomationML (Automation Markup Language) is another
XML-based, neutral and open data format that enables
storage and exchange of plant engineering information.
AutomationML alleviates the heterogeneity of the various
state-of-the-art engineering tools, which are used in
different areas of industrial automation.

AutomationML is based on a series of other standards and formats, including: (i) the
previously described CAEX for plant topology representation in an hierarchical manner; (ii)
the COLLADA format for representing geometrical information, graphical attributes and
kinematics in the 3D space; and (iii) industrial automation logic implemented based on the
PLCopen XML format, which provides the means for modelling the dynamic behaviour (e.g.,
sequences of actions) of the automation system.
AutomationML subsumes some of the above listed formats for plant information
representation (e.g., CAEX) and as such it is listed among the RAMI4.0 and Industry 4.0
standards. In PROPHESY it can provide a methodology (including reference and use of other
schemata) for representing plant information and industrial automation logic.

2.2.3.1.1 IEC 62424 CAEX

Similar to XMpLant, CAEX (Computer Aided Engineering Exchange) is a neutral data format,

which provides the means for describing a plant and its elements, but also for exchanging

data across different process engineering and process control tools. CAEX assumes a

hierarchical plant architecture and enables storage of hierarchical object information. It

enables an object-oriented approach to plan modelling, as it uses objects to represent the

various modules of a plant. Note that CAEX is also an XML format and hence it is defined as

XML schema. Elements of the latter schema could be used to structure plant descriptions in

PROPHESY.

5 https://www.automationml.org/o.red.c/home.html

https://www.automationml.org/o.red.c/home.html

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 17

2.2.3.1.2 IEC 61360

As stated in [3], properties classify a system and can be expressed by means of simple values.

In the Industry 4.0 context, information needs to be easily shared between all the actors

located in the three-dimensional model of the RAMI 4.0. Although it is not feasible to define

a single and universal information model, the application of property models can help to

achieve interoperability between systems and software components [4]. In particular,

properties can be used to define and communicate the actual state, the actual configuration

and/or setting variables, as well as, the capabilities of the system or physical asset. To do that,

properties need to be defined in a very generic and unambiguous way, the standard IEC-

61360 defines the structure and the necessary elements to be used to organize the property

itself.

2.2.4 Far-Edge

The main goal of H2020 FAR-EDGE is to provide and validate a novel industrial automation

platform that leverages the edge computing paradigm, along with distributed ledger

technologies for secure state synchronization of edge industrial systems in a plant or across

the supply chain.

FAR-EDGE is designing, developing and validating an edge computing platform for factory

automation, which offers functionalities in three distinct, yet complementary domains,

namely Automation, Analytics and Simulation. The Analytics domain provides the means for

collecting, filtering and processing large volumes of data from the manufacturing shopfloor

towards calculating indicators associated with manufacturing performance and automation.

Analytics functions are offered by the Distributed Data Analytics (DDA) infrastructure, which

is enabling analytics functions within FAR-EDGE compliant deployments i.e. deployments that

comply with the structuring principles of the FAR-EDGE Platform architecture. Another part

of FAR-EDGE platform design and implementation is also the development of a range of digital

models for the three main functional domains of its platform, namely automation, simulation

and Distributed Data Analytics (DDA).

A relevel part of FAREDGE to the PROPHESY scope is the Distributed Data Analytics (DDA).

DDA is the specification and prototype implementation of the EAE (Edge Analytics Engine)

enabler of the FAR-EDGE architecture, which is a runtime environment that provides the

means for executing edge scoped analytics functions within edge gateways. The EAE

interfaces to the Edge Computing Infrastructure (ECI) of the project in order to access field

data. Its core operation is enabled by three types of processor functions, which enable the

pre-processing of data streams, their data analysis and ultimately the storage of the analytics

results. The EAE enable the concurrent execution of multiple instances of the above types of

processing operations at the same time.

One of the main innovations of the EAE is that it is flexibly configurable and programmable.

In particular, the operation of the EAE can be driven by an Analytics Orchestrator Manifest

(APM) document, which specify how available processor functions can be combined to yield

a specific analytics calculation. This specification leverages devices and processing functions

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 18

that are available in the data streams registry of the ECI. Hence, solution integrators and

manufacturers can flexibly configure their analytics operations through defining APM.

The EAE is also extensible in terms of processing functions. Providers and integrators of

factory automation solutions can define new processing capabilities, as soon as they adhere

to the three main types of EAE processors. For example, the EAE can be extended with

processors that implement machine learning schemes such as logistic regression or Bayesian

processing techniques, in addition to processors that provide support for simple statistical

calculation over data streams such as averages and standard deviations. By registering these

processing capabilities in the device registry of the ECI, they can enable their use in the scope

of the definition of edge analytics functions via APM. Overall, EAE is not only configurable and

programmable, but also flexibly extensible, in terms of processing functions.

2.2.5 Human-Machine Interface

Telegram6

Telegram is a cloud-based instant messaging and voice over IP (VoIP) service

developed by Telegram Messenger LLP. Telegram client apps are available for

the most common platforms such as Android, iOS, macOS, Windows, Linux, etc.

By using these apps, users can exchange messages and files of any type.

The usage of telegram is extremely interesting especially for the design and implementation

of the so-called “bots”. Bots are telegram accounts that are operated by programs allowing

software programs to communicate and exchange messages with other programs (bots)

and/or human user.

2.2.6 Messaging Integration patterns

Now days, rarely exists monolithic applications which can meet consumers demand. The key

concept is the system design and implementation to be more in a service-oriented approach,

in which, every service is exposed as a micro-service which “produces” a specific task. The full

functionality of the designed system can be achieved by integrating these services. Of course,

integration is not just a simple procedure, because we must face different implementations,

came from various vendors, for each simple component. Integration patterns come to solve

this issue by providing a guidance. In fact, integration patterns are not invented: they are best

practices originated from previous integration projects. For the scope of data streaming we

investigate the usage of the messaging integration patterns which are a subset of the

integration patterns (Figure 4).

6 https://telegram.org

https://telegram.org/

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 19

Figure 4: Messaging integration patterns. source: [5]

2.2.6.1 Why using messaging

The adoption of messaging approach to an integration solution has many advantages[5]:

• Remote Communication: Messaging enables separate applications to communicate

and transfer data.

• Platform/Language Integration: Systems are connecting via remote communication,

usually use different languages, technologies and protocols. A messaging system can

be a translator between these systems, allowing them to all communicate through a

common way.

• Asynchronous Communication: Messaging enables "a send and forget" approach to

communication. The sender does not have to wait for the receiver to receive and

process the message. If the receiver wants to send an acknowledgement back to the

sender, this message will be detected by a call-back mechanism on the sender.

• Mediation: A messaging system acts as a mediator between all the systems that can

send and receive messages. A system can use it as a directory of other applications or

services available to integrate with.

• Reliable Communication: Messaging provides reliable delivery, that a remote

procedure call (RPC) cannot, because uses a "store and forward approach" to

transmitting messages. The data is packaged as messages, which are atomic,

independent units. When the sender sends a message, the messaging system stores

the message. It then delivers the message by forwarding it to the receiver.

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 20

2.2.6.2 Basic messaging concept

• Channels — Messaging applications transmit data through a Message Channel, a

virtual pipe that connects a sender to a receiver.

• Messages — A Message is an atomic packet of data that can be transmitted on a

channel. Thus, to transmit data, an application must break the data into one or more

packets, wrap each packet as a message, and then send the message on a channel.

Likewise, a receiver application receives a message and must extract the data from

the message to process it. The message system will try repeatedly to deliver the

message (e.g., transmit it from the sender to the receiver) until it succeeds.

• Multi-step delivery — In the simplest case, the message system delivers a message

directly from the sender’s computer to the receiver’s computer. However, actions

often need to be performed on the message after it is sent by its original sender but

before it is received by its final receiver. For example, the message may have to be

validated or transformed because the receiver expects a different message format

than the sender. A Pipes and Filters architecture describes how multiple processing

steps can be chained together using channels.

• Routing — In a large enterprise with numerous applications and channels to connect

them, a message may have to go through several channels to reach its destination.

The route a message must follow may be so complex that the original sender does not

know what channel will get the message to the final receiver. Instead, the original

sender sends the message to a Message Router, an application component and filter

in the pipes-and-filters architecture, which will determine how to navigate the channel

topology and direct the message to the final receiver, or at least to the next router.

• Transformation — Various applications may not agree on the format for the same

conceptual data; the sender formats the message one way, yet the receiver expects it

to be formatted another way. To reconcile this, the message must go through an

intermediate filter, a Message Translator, that converts the message from one format

to another.

• Endpoints — An application does not have some built-in capability to interface with a

messaging system. Rather, it must contain a layer of code that knows both how the

application works and how the messaging system works, bridging the two so that they

work together. This bridge code is a set of coordinated Message Endpoints that enable

the application to send and receive messages.

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 21

3 Overview of PROPHESY-CPS Middleware

Infrastructure Elements
3.1 Middleware Infrastructure architecture
Based on Description of Action (DOA) the middleware infrastructure has two key scopes: a)

the first one is to support data collections and analytics in the CPS level and b) the second one

is to support data streaming analytics to the cloud layer. This section provides an overview of

middleware infrastructure aligned with the PROPHESY-CPS architecture defined in Task 3.1

and depicted in Figure 5.

Figure 5: PROPHESY-CPS Logical Architecture based on D3.1

3.1.1 Key functionality of middleware infrastructure.

The functionality of Middleware Infrastructure is acquired by the combination of

specifications defined in Description of Action (DoA), in deliverable D2.1 “PROPHESY-CPS

Specifications”, in D2.5 “Platform Architectures and Ecosystem Specifications”, in D3.1 “CPS

Detailed Architecture v1” and in D3.3 “Digital Modelling and Interoperability”.

In summary, Middleware Infrastructure should follow the specification described in Table 3:

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 22

Table 3: Summary of specifications of middleware infrastructure

 Source of
spec

Description Category

1 DoA support data collection and analytics in
PROPHESY-CPS

Enable Analytics

2 DoA provide data steaming analytics Enable Analytics

3 DoA enable analytics both at the edge and at
the cloud layers of the PROPHESY-CPS

Enable Analytics and cloud
integration

4 D2.1 AAS is responsible for the
communication with systems outside the
CPS for exposing the functionality

Communication

5 D2.1 PROPHESY-CPS should expose the
following functionality to external
systems:

• Provide access in the streams
produced by the internal assets
(sensors, machines, analytics
results)

• Mechanism which enables the
configuration of High-Frequency
Machine Learning

• Mechanism which enables the
configuration sensing and acting

Communication

6 D2.5 PdM middleware infrastructure is similar
to the CPS’s one.

cloud integration

7 D3.1 The final detailed architecture of
PROPHESY-CPS is provided (Figure 5) and
is aligned with MANTIS.

Communication and cloud
integration

8 D3.3 Use a common model which describes
elements and data in CPS and platform
level

All

9 D2.1 &
D2.5

In PROPHESY we have two different
machine learning levels. On CPS level we
have HF-ML and in platform level we
have LF-ML. HF-ML uses data provided by
CPS itself and LF-ML processes data
streams from every CPS belongs to the
PROPHESY platforms

Enable Analytics and cloud
integration

All these specifications can be grouped in 3 main categories: the first category refers to the

communication of PROPHESY-CPS with external systems (and for the PROPHESY scope we

can focus on data and functionality exchange between PROPHESY-CPS and PROPHESY-PdM),

the second one refers to the mechanism which enables analytics, and finally, the last one

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 23

refers to the integration in cloud level. The next paragraph “3.1.2: Middleware Infrastructure

in CPS level” is focused on functionality acquired from “communication” and “enable

analytics” specifications which is the local scope of middleware infrastructure, while the

paragraph “3.1.3: Cloud Integration” is focused on integration between CPS and PdM.

3.1.2 Middleware Infrastructure in CPS level

The adoption of AAS, satisfies the “communication” group of specifications and partly, the

“cloud integration”. In more details, the AAS can provide access to the internal data stream

or functions of CPS, from other systems. Of course, for the scope of RPOPHESY the only

“other” system, is the PROPHESY-PdM platform and its elements.

Internally, middleware infrastructure should provide access in every component that

consumes data produced by internal assets. As consumers are the local based analytics (HF-

ML). Middleware infrastructure should provide a solid mechanism for supporting and

enabling analytics running in the CPS and consuming data streams produced by CPS assets.

For this reason, we introduce as part of middleware infrastructure, the Data Streaming

subsystem which can satisfy the “Enable Analytics” group of specifications. In summary, Data

Streaming subsystem should be capable of carrying data streams created by any type of data

sources and enabling analytics.

Figure 6: AAS and Data Streaming subsystems of middleware infrastructure

3.1.3 Cloud Integration

The streaming analytics in PROPHESY-PdM platform is similar with the PROPHESY-CPS one.

The scope of the platform is to support cloud analytics. Since we adopted the CPS architecture

to the PdM platform, Data Streaming sub system in PdM level is a mirroring implementation

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 24

of Data Streaming in CPS level (Figure 7). It contains the same components and is responsible

for registering CPSs into PdM platform and requesting streams for them. Also, it acts as

infrastructure for enabling analytics in platform level. In summary, the difference between

CPS level and PdM level is that in CPS level, the data sources are topics on a message bus

produced by assets. On PdM level, data sources are data streams provided by each CPS.

Figure 7: Cloud Integration of data streaming analytics

3.2 Asset Administration Shell
The asset administration shell is tending to support the communication of CPS with external

systems, such as PROPHESY PdM platform (Figure 6 and Figure 7). The AAS consists of two

components:

• Manifest: is responsible to expose to external systems the description of the

functionalities and resources are provided by the CPS. It consists of two main parts: a)

the Header and b) the Body. The Header contains information about CPS itself and the

Body is a collection of sub-models. Each sub-model describes a set of properties are

related with the physical asset capabilities. In PROPHESY CPS, each property

represents a stream of data produced by assets (sensors, machines or analytics

processors) or a command.

• Component Manager: provides the necessary services – from one side – for

maintaining and managing the AAS, i.e. its own sub- models, and – from the other side

– for establishing a communication with the physical asset for gathering the required

live data. To do that, the Component Manager comprises the following main sub-

components/modules, namely: i) External Interface; ii) Core; and iii) Internal Interface.

o External Interface: provides the instruments to enable the physical asset

virtualization through a common interface to the lower levels. In particular, it

handles all requests for consuming properties by external users.

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 25

o Core: provides all the necessary mechanisms and the logic to allow the correct

functioning of the AAS.

o Internal Interface: acts as the connection layer between the rest CPS and

specially the Data Streaming component and the AAS.

The Table 4 provides in summary the components and sub components of AAS. A more

detailed description of Asset Administration Shell is provided in the next chapter of this

document (Chapter 4: Asset Administration Shel).

Table 4: AAS components in a summary view

Component Description

Manifest Expose to external systems the description of the functionalities
and resources are provided by the CPS

 Header Information about CPS itself

 Body Collection of sub-models related to live data and functionalities of
CPSs assets

Component Manager Management of AAS
Streaming live data to external systems (PdM platform)
Receiving commands from external systems (PdM platform)

 External
Interface

• Communication with external systems

• Interface for managing – configuring AAS itself

 Core Business logic for the information flows between CPS and external
systems

 Internal
Interface

The connection layer between data streaming sub-system and AAS

3.3 Data Streaming
Data Streaming sub-system is responsible for streaming data from logical data sources inside

the CPS, to the AAS. Also, data streaming component provides the necessary infrastructure

for analytics processing (Figure 6 and Figure 7). Data Streaming consists of the following

components:

• Streaming Gateway: The main role of this component is to provide a connection

Interface with AAS in order to enable data streaming outside the CPS. By receiving a

request from AAS, the Streaming Gateway discovers the appropriate data source

which satisfies this request. Once the data source is discovered, the Streaming

Gateway routes the request to the specific data source and creates a data stream

between AAS and data source.

• Asset/CPS Registry: This component provides flexibility and data source

discoverability inside the CPS (aligned with the local scope of CPS). All assets inside the

CPS are registered into this component. Once they registered, they can be discovered

by other components (either processors either AAS) and finally their data can be

streamed. In platform level the registry satisfies a more global scope. For this reason,

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 26

the registry in platform level is enhanced with CPS registration functionality and not

only by registering asset.

• Message Translating and Routing Service: This component is responsible for creating

data flows from the data sources to analytics processors, in order to support data

analytics in CPS level. The Message Translating and Routing Service provides also cloud

analytics in PdM level. The only difference in platform level is that the data sources

are streams provided by AAS.

The Table 5 provides in summary the components and sub components of Data Streaming

sub system. A more detailed description of Data Streaming is provided in the Chapter 5: Data

streaming in CPS and cloud.

Table 5: Data Streaming Components in a summary view

Component Description

Streaming Gateway Receives requests from AAS for consuming live data
 and routes to the specific data source.

Asset/CPS Registry It is the registry in which all assets of PROPHESY CPS are declared
in order to be accessible. Provides asset discoverability. In cloud
level registry is extended in order to include CPSs.

Message Translating
and Routing Service

It is responsible for activating analytics processors and creating
data flows between data producers and data consumers.

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 27

4 Asset Administration Shell
In PROPHESY, the AAS concept is introduced to allow the integration of any existing asset in

the solution developed within the scope of the project. The main purpose of the AAS is to

equip CPSs with the necessary capabilities to talk and share information within the cyber

world, i.e. to deliver to the application developers an abstraction layer that is capable to

handle the typical heterogeneity of industrial processes. In such a way, developers can easily

use the AAS interface to talk with the asset regardless the specific network technology

deployed, and ontology used.

4.1 Conceptual overview
The asset administration shell concept (AAS) is strictly connected to the I4.0 component

concept. The I4.0 component can be defined as a Cyber Physical System (CPS) in the context

of the RAMI4.0 and connects physical and cyber worlds with the objective of creating a unique

virtual representation of the physical asset within RAMI4.0 tri-dimensional model. The I4.0

Component can be defined as:

“globally unique identifiable participant with communication capabilities consisting of an

Administration Shell and an asset within an I4.0 system” based on [6].

Figure 8: The I4.0 Component logical representation [7]

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 28

Therefore, an I4.0 Component is composed by two mandatory elements, namely: the AAS and

the asset. In particular, the AAS is the virtual representation of the asset, i.e. the

“cyberization” of the physical world. The AAS is – in turn – composed by a Manifest and a

Component Manager. The Manifest aggregates information about identification, data and

functionalities exposed while the Component Manager is responsible to administer the

models within the Manifest as well as to link the information in the AAS to both physical and

cyber worlds. In such a way, the Component Manager includes two interfaces, namely a

northbound interface (NBI) and a southbound interface (SBI). The former provides a uniform

Application Programming Interface (API) that receives and send data in a strict and coherent

format. The latter is very specific API (strictly dependent on the technology deployed) and

provides access to the asset and – thus – to the operational and run-time data. In this

scenario, the Component Manager is responsible to guarantee the translation of the data

to/from a strict and coherent format from/to very specific domain ontologies or – in other

words – within the AAS all the information acquired from physical asset is translated and

presented in a “understandable” form in order to be easily used and shared.

Conceptual View of a Service-Oriented Device Architecture (SODA)

The envisioned PROPHESY AAS relies on the SOA paradigm in order to enable the design and

development of distributed networked systems. In particular, the AAS uses the NBI interface

to connect to the Manufacturing SODA backbone while enabling the AAS to be accessible by

any user that is interested to the information the AAS includes. The manufacturing SODA

backbone is where data is shared between the AASs (see Figure 9). In the context of the

PROPHESY project, the focus is not on the communication between AASs but on the

communication between AAS and PROPHESY-PdM platform. Since PROPHESY-PdM platform

can be considered on a higher level of abstraction than the PROPHESY-CPS thus a hierarchical

organization – and communication pattern – between the CPS and PdM layers is being

investigated (see Figure 10) in line with what it has been specified in deliverable D2.1 –

PROPHESY-CPS Specification.

Figure 9: AAS Example Network

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 29

Figure 10: AAS to PROPHESY-PdM Platform Example Network

4.2 Software Modules/Components

4.2.1 Layered Organization

Figure 11: AAS Layered Organization and Technical Environment

The AAS relies on a layered architecture pattern that promotes the concept of separation of

concerns where software components/modules with the same responsibilities are enclosed

within the same layer (see Figure 11). In particular, the Functional Layer is where the

functionality of the system (i.e. of the PROPHESY-CPS) are exposed as services to the external

users. RESTful web services have been used as the reference technology to build the

necessary interfaces to be used by service consumers. The Information Layer is the core of

the AAS, i.e. where the internal logic of the AAS resides. It contains all the processing logic

and necessary workflows that makes the “things happen”. Finally, the Connection and

Integration Layers are together responsible for sending and receiving data from the asset. The

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 30

latter handles the communication with the asset (communication driver) while translating all

the requests from the upper layer into the domain-specific ontology and vice-versa. The

former provides a unique and harmonized communication interface (generic interface to the

communication drivers) to access the asset while detaching the AAS from the specific

communication technology.

4.2.2 Manifest

4.2.2.1 Core Structuring Model

The Figure 12 shows the core structuring model of the AAS. This model uses sub-models as

the primary concept to structure the content of the AAS. They are used to expose physical

asset capabilities – in a generic and standardized way – within an I4.0 production system. Sub-

models provide containers for Properties. Properties – in turn – are collection of data elements

and are used to structure the content of the sub-models.

Figure 12: Asset Administration Shell Core Structuring Model based on [8]

Property Definition and Characterization

The definition and characterization of the properties that populate the sub-models within the

Manifest follows the IEC-61360 standard. However, only a subset of the whole data fields of

the standard have been used for defining and characterizing the properties. The subset of

data fields is in accordance with [7] (see Table 6).

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 31

Table 6: Considered Data Fields for Properties Definition and Characterization based on [7]

Property Definition Property Characterization

Hierarchy ID Name Definition Unit of
Measure

Data
Format

Data
Type

Value
List

Value Expression
Semantic

Expression
Logic

Views

Field Description Values

Expression Semantic Specifies which role the property plays in
an interaction

Requirement,
Confirmation,
Measurement,

…

Expression Logic Specifies the function to be used if
different values need to be compared

Equal,
Greater Than,

Less Than,
Not Equal,
Less Equal,

Greater Equal

For more information about the data fields and the related meeting please refer to [7].

The Figure 13 shows the translation of the meta-model presented in Figure 12 into the

Computer Aided Engineering Exchange (CAEX) data format. In particular, the Automation ML

tool has been used to create the CAEX representation. The different colours in Figure 13 have

the following meaning:

• Pink: standard elements related with the CAEX file;

• Yellow: standard element elements related with the Automation ML standard data

format; and

• Green: custom elements introduced to describe the meta-model in Figure 13.

In order to test the AAS a Manifest with several sub-models have been created by taking into

account the examples and descriptions in [7]. In particular two sub-models have been

included within the Manifest, namely:

1. Energy Efficiency: this hypothetical sub-model aims to show how the AAS can provide

energy-related properties to external users about current consumption of the

attached physical asset;

2. Drilling: this hypothetical sub-model aims to show how the AAS can provide

confirmation/setting properties to external users about a drilling process executed by

the attached physical asset.

The final result is presented in Figure 14.

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 32

4.2.2.2 Implementation

Figure 13:Overview of the Manifest structure (CAEX File)

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 33

Figure 14: Overview of the Manifest structure populated with two sub-models (CAEX file)

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 34

4.2.3 Component manager

The Component Manager is aimed to provide – from one side – the necessary services for

maintaining and managing the AAS, i.e. its own sub- models, and – from the other side – to

establish a communication with the physical asset for gathering the required live data. To do

that, the Component Manager comprises the following main sub-components/modules,

namely: i) External Interface; ii) Core; and iii) Internal Interface.

4.2.3.1 External Interface

The External Interface is the sub-component of the Component Manager that provides the

instruments to enable the physical asset virtualization through a common interface and

technology-agnostic access to the lower levels. In particular, it handles the creation (Create),

selection (Read), modification (Update) and deletion (Delete) of elements from the Manifest

requested by external users. It relies on RESTful services and Telegram commands for

communication. At the current stage of the PROPHESY project, the External Interface exposes

the capabilities/functionalities showed in Table 7. The provided API represents the

capabilities/functionalities of the AAS and is linked to the sub-models specified and described

within the Manifest, that – in turn – are strictly related to physical asset.

Table 7: External Interface exposed capabilities/functionalities (via RESTful)

External Interface Exposed Functionalities

Resource Operation HTTP Method URL

AAS Initialize the AAS PUT <aas_URL>/aas/initializtion

 Load a manifest
automation ML file

POST <aas_URL>/aas/loadManifest

Manifest List the AAS identifiers
that are part of the
header

GET <aas_URL>/aas/manifest/hea
ders

 List the AAS submodels
that are part of the
body

GET <aas_URL>/aas/manifest/sub
models

 Get a specific submodel
by id

GET <aas_URL>/aas/manifest/sub
model/:id

 Store a new submodel
within the Manifest

POST <aas_URL>/aas/manifest/add
Submodel

 Delete an existing
submodel

DELETE <aas_URL>/aas/manifest/rem
oveSubmodel/:id

 Update an existing
submodel

PUT <aas_URL>/aas/manifest/upd
ateSubmodel

 Subscribe to a
submodel, i.e.
generates periodically

PUT <aas_URL>/aas/manifest/subs
cribeSubmodel/:id

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 35

events about the status
of the submodel

 Unsubscribe a
subscribe submodel

PUT <aas_URL>/aas/manifest/unsu
bscribeSubmodel/:id

Next to the RESTful interface, a message-based interaction (implemented by using Telegram)

is also possible. This interface allows the interaction with the AAS by using all kind of devices

while allowing the contextualization of the functionalities and capabilities, i.e. to organize

functionalities and capabilities according to specific rules and/or groups.

AAS Bot Manager

The AAS Bot Manager is the sub-component of the External Interface that allows the

interaction with the AAS by using the Telegram technology. The following commands are

available for the early prototype of the AAS.

Table 8: External interface exposed capabilities/functionalities (via Telegram)

Telegram Exposed Functionalities

Resource Operation Command

AAS Show the list of commands /help

 Initialize the AAS /intialize

 Load a manifest automation ML file /loadManifest

 Get the current Manifest /getManifest

4.2.3.2 Core

The Core is the sub-component of the Component Manager that provides all the necessary

mechanisms and the logic to allow the correct functioning of the AAS. In particular, it enables

the information flow from the physical world to the cyber world and manage all the necessary

transformation and/or routing processes.

Data Flows

The Data Flows is the sub-component of the Core that manages the creation of flows of data

to external applications and/or more in general to any external user. It enables the creation

of a communication channel from the physical asset (by using the Internal Interface) to the

cyber world by connecting the specific communication driver to the generic requested sub-

model through the combination of 2 possible mechanisms, namely:

• Services provided by the AAS; and

• Events generated by the AAS (Kafka producer).

4.2.3.3 Internal Interface

The Internal Interface is the sub-component of the Component Manager is acting as the

integration and connection layer between the physical world and the AAS and is designed to

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 36

provide a generic and standardized operations to access all the elements of the PROPHESY-

CPS that are not part of the AAS. Specifically, it is implemented by using a Facade software

design pattern (see Figure 15) in order to provide modelling abstractions of physical assets

while ensuring their seamlessly integration and usage within the AAS.

Figure 15: Facade Software Design Pattern

4.2.3.4 Development Environment

The success in preserving digital objects, components, modules or more in general

implementations strictly depends on the technology chosen and used [9]. Since technology is

a driving force in preserving and continuously change the characteristics of the digital objects,

then the process of selecting a technology needs to guarantee that:

1) The technology should be capable to treat new objects created with the latest

technologies;

2) The technology should be supported by manufacturers and eventually provides

migration path to the next technological generation;

3) The technology should be easy-to-use by any user;

4) The technology should be capable to cope with the heterogeneity of products and

digital implementations,

In order to identify a suitable environment for developing the core digital components to be

used as the basis for the implementation of the logic associated to the AAS, the following

evaluation factors have been extracted from [9] and – thus – considered (see Table 9).

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 37

Table 9: Evaluation Factors

Group Factor Remark

G
en

er
al

Maturity Is the technology fully developed and are there already
systems in productive use?

Experience Are there already verifiable experiences in applying the
technology?

Community How many developers are using the framework? How active
is the development community?

Standardization Is the technology based on standards?

Modularity and
Flexibility

Is it easily possible to add new components at low cost, to
change or update them?

Support Is the technology widespread enough to guarantee that it
will be supported by the manufacturers during the desired
lifespan of the preservation system?

Te
ch

n
ic

al

Heterogeneity/
Compatibility

Does the technology allow the connection and integration of
hardware and software components based on distinct
technologies (e.g. REST, OPC-UA, Modbus, etc)?

Preservation
Period
(Migration)

Does the technology allow to export implemented digital
objects together with their context data in standards format
in order to be imported into a new system/device/asset?

Modularity and
Flexibility

Is the technology flexible enough to allow the easy
integration of new digital objects?

Platform Can the technology be deployed in Linux and Windows based
operating systems? Does the technology allow the
deployment of digital objects in single-board computers?

Adaptability Does the technology allow the easy adaptation of the
implementations to cope with changes in logic and/or
system evolution

Licensing Is the technology fully available to be able to fix bugs or
implement extensions?

Co-creation Does the technology allow the collaborative creation of
digital objects?

Preservation
Period (internet
technologies)

Is the technology based on internet technologies in order to
guarantee a longer time span?

P
eo

p
le

Skills Does the selected technology need specific skills which must
be available in-house? Are these skills already available or
can they easily be acquired? Is the technology easy-to-use?

Experience Is there sufficient experience with the technology for
support in case of difficulties available?

P
ro

ce
d

u
re

s Flexibility Does the technology allow flexibly implementations? Does it
allow changes in the preservation procedures?

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 38

The evaluation factors represent criteria that have been considered for selecting the AAS core

components development technology. By applying the assessment criteria (see Table 9), it

was decided to use Node-red as the core development technology. As a matter of fact, this

technology recently hit 1-million npm- installs and is based on a very active community of

developers that is present on Slack, Node-red forum, as well as, Stackoverflow. The data base

of digital objects (things) and/or nodes is growing every day and is quickly reaching 3000 of

objects that can be integrated within the application while enabling compatibility,

integrability as well as to cope with the heterogeneity in terms of hardware and software that

is typical of today. Furthermore, since node-red is based on the flow-programming paradigm

than it provides a graphical and easy-to-use environment that allows to build complex

applications by dragging and dropping nodes, wiring and configuring nodes. It can be used by

people with no or few programming skills and it makes use of internet technologies

(JavaScript) for building up applications as well as new nodes.

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 39

5 Data streaming in CPS and cloud
Since Asset Administration Shell subsystem is responsible for the communication with

PROPHESY-PdM, Data streaming subsystem is responsible – from one side – for connecting

assets to the Asset Administration Shell and vice versa and – from the other side – for

supporting data analytics of HF-ML or LF-ML.

The general approach of Data Streaming is to provide an efficient mechanism which can

receive data from various source points, process or transform these data and finally delivers

these data to a set of destination points (Figure 16). Source points are mainly represented as

topics on the message bus, which are the logical twins of the physical devices (such as a sensor

or an asset to the field), or the results of the analytics processors. Destination points are either

topics to the message bus – as an analytic result – or the Asset Administration Shell which

implements external requests comes to the CPS from another CPS or from the PROPHESY–

PdM platform. Finally, the data processing is implemented by the machine learning sub

system (HF-ML toolbox in the CPS level and LF-ML in the platform level). In conclusion, Data

Streaming subsystem is the background infrastructure which a) enables data processing and

analytics and b) acts as a proxy for AAS.

Figure 16: Data Streaming component architecture

5.1 Main concept
The adoption of a message bus in the RPOPHESY CPS architecture, drives us to the usage of a

set of messaging integration patterns for the implementation of Data Streaming subsystem.

The Data Streaming subsystem is responsible of receiving data from various source points and

delivering these data to a set of destination points. In summary, Data Streaming subsystem is

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 40

the key element of integration inside the PROPHESY CPS extending the Message Bus

functionality by providing an abstraction level.

5.1.1 Adopted messaging patters

This paragraph analyses the messaging integration patterns which are adopted for the Data

streaming component. The basic concept of messaging is that we have two systems that want

to exchange data. The system which sends data is called producer (or sender) and the system

which receives data is called consumer (or receiver). Both are called message end points.

These data are packaged as messages and the producer sends them through a message

channel (Figure 17).

Figure 17: Basic concept of messaging source: [10]

Bellow we describe the basic terms are used in messaging and the proposed patterns for these

terms.

5.1.1.1 Message channel

A Message channel is a virtual pipe that connects a sender to a receiver. The

system/application sending the data may not know which application will receive the data,

but by selecting a particular channel to send the data on, the sender knows that the receiver

will be one that is looking for that sort of data by looking for it on that channel. In this way,

the applications that produce shared data have a way to communicate with those that wish

to consume it. Two messaging patterns for message channels are investigated to be used in

data streaming component:

• Point to point channel: Ensures that only one receiver consumes any given message.

If the channel has multiple receivers, only one of them can successfully consume a

specific message (Figure 18).

• Publish subscribe channel: There is one input channel that splits into multiple output

channels, one for each subscriber. When an event is published into the channel, the

Publish-Subscribe Channel delivers a copy of the message to each of the output

channels (Figure 18).

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 41

Figure 18: To the left, point to point channel and to the right, publish subscribe channel
source: [11]

5.1.1.2 Message

Message is any data record which is packaged to an entity in order to be transmitted through

a message channel. For example, based on PROPHESY digital models which is summarily

described to the next paragraph, a message can be a liveData/ record which is produced by

every data source, logical or not. The following messaging patterns are investigating for the

PROPHESY purpose:

• Command message: reliably invokes a procedure in another application. This pattern

can be applied by the data streaming infrastructure inside the CPS, in order to receive

commands from external systems (PROPHESY -PdM platform) and pushes to

appropriate asset. An example can be the customisation of analytics.

• Event message: enables the asynchronous event notification between applications.

• Request reply message: for two-way communication needs.

5.1.1.3 Messaging Endpoints

Messaging Endpoint is a client of the messaging system which enables applications to send or

receive messages. Usually applications know nothing about messaging systems. Messaging

endpoints receive data from sender application, transform them to message format and

sends them to message channel. Also, another endpoint receives messages from message

channel extracts the messages and delivers the data to the receiver application (see Figure

19). Generally, there are two main types of endpoints: sender and receiver. Message patterns

are investigating for the PROPHESY purposes are:

• Messaging gateway: The Messaging Gateway encapsulates messaging-specific code

(e.g., the code required to send or receive a message) and separates it from the rest

of the application code which does not know anything about messaging system. This

way, only the Messaging Gateway code knows about the messaging system.

Messaging Gateway can be used both as sender and receiver.

• Channel adapter: The adapter acts as a messaging client to the messaging system and

invokes applications functions via an application-supplied interface. This way, any

application can connect to the messaging system and be integrated with other

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 42

applications if it has a proper Channel Adapter. It can be applied in both sender and

receiver.

• Event-Driven Consumer: The application should use an Event-Driven Consumer, one

that is automatically handed messages as they’re delivered on the channel. This is also

known as an asynchronous receiver, because the receiver does not have a running

thread until a call back thread delivers a message. This pattern is referred only to the

receivers.

Figure 19: Messaging Endpoints, source: [12]

5.1.2 Definitions from digital models (according to deliverable D3.3)

As defined in deliverable D3.3 “Digital Modelling and Interoperability v1”, for the data routing

and data exchange, PROPHESY will use a customized version of FAR-EDGE Digital models

capable to support the measurements streaming from the monitored machines along with a

data routing and configuration methodology. Bellow we describe in summary the main

entities of PROPHESY digital models.

5.1.2.1 Data definitions

• Data Kind (DK): This entity specifies the semantics of the data of the data source, which

provides flexibility in modelling different types of data. It can be used to define virtually

any type of data in an open and extensible way.

• Data Interface Specification (DI): The DI entity is associated with a data source and

provides the information need to connect to it and access its data, including details like

network protocol, port, network address and more.

• Data Source Definition (DSD): This entity defines the properties of a data source in the

shopfloor, such as a data stream from a sensor or an automation device.

• Processor Definition (PD): This entity specifies a processing function to be applied on one

or more data sources. It can be used to set up a data routing flow and to utilize analytics

algorithms as well.

5.1.2.2 Data manipulation

• Processor Manifest (PM): This entity represents an instance of a processors that is

defined through the PD. The instance specifies the type of processors and its actual logic

through linking to a programming function.

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 43

• Processor orchestrator (PO): A PO entity represents an entire data routing workflow. It

defines a combination of data processor instances (i.e. of PMs) that implements a

distributed data routing task. The latter is likely to span multiple edge gateways (i.e., CPSs)

and to operate over their data sources.

5.1.2.3 Edge Gateway

• Data Source Manifest (DSM): The DSM entity specifies a specific instance of a data source

in-line with its DSD, DI and DK specifications. Multiple manifests (i.e. DSMs) are therefore

used to represent the data sources that are available in the factory in the scope of the

PROPHESY predictive maintenance.

5.1.2.4 Live Data Set (LDS)

• Live Data Set (LDS): The LDS entity models and represents the actual dataset that stem

from an instance of a data source that is represented through a DSM. Hence, it references

a DSM, which drives the specification of the types of the attributes of the LiveDataSet in-

line with the DK. A LiveDataSet is associated with a timestamp and keeps track of the

location of the data source in case it is associated with a mobile (rather than a stationary)

data source. Hence, it has a location attribute as well. In principle the data source

comprises a set of name-value pairs, which adhere to different data types in-line with the

DK of the DSM.

5.2 Components of Data Streaming sub-system
The Data Streaming subsystem consists of the following components:

• Asset Registry

• Streaming Gateway

• Message Translating and Routing Service

• Translators

5.2.1 Asset Registry

In order to support a multi-protocol environment and provide a flexibility and data source

discoverability in data streaming component, we have designed and implemented Data

Source Registry. The Registry functionality consists of two sub-components: a) the Registry

Repo and b) the Registry Service. The Registry Repo is a REST Web Service that provides a

CRUD interface on the Registry database that follows the PROPHESY digital data model,

whereas the Registry Service offers business services, like register device etc. The Registry

supports the multi-protocol and multi-data model field environment by registering the

devices including not only their connection endpoints, but also the data models and protocols

they support. This way a client or a consumer of a data source, e.g. an analytics process, can

discover these protocols and data models and use specific clients and data transformations.

This way, through the Registry it is possible for PRTOPHESY-CPS processes to connect and

acquire data from data sources (devices) following different protocols and/or data models.

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 44

5.2.1.1 Registry Service

Based on PROPHESY digital data models introduced in deliverable D3.3 and presented in

summary on paragraph 5.1.2, there are three entities which are registered to the registry:

• Data Source Manifest (DSM)

• Processor Manifest (PM)

• Processor Orchestrator (PO)

For each entity, two operations are supported by Registry Service a) register and b) un-

register. Figure 20 depicts the sequence diagram for each register and un-register operation.

The functionality of Registry Service is exposed through a REST interface:

• HTTP POST /registry/DeviceRegistration: a data source is registered as a logical

device by providing its Data Source Manifest. The sequence diagram of all actions is

depicted in Figure 20.

• HTTP DELETE /registry/DeviceRegistration/deviceId: unregisters a logical device

identified by deviceId. The sequence diagram is shown in Figure 20.

• HTTP POST /registry/ProcessorManifest: registers a processor by providing Processor

Manifest. The sequence diagram is similar to Figure 20.

• HTTP DELETE /registry/ProcessorManifest/processorId: unregisters a processor

identified by processorId. The sequence diagram is similar to Figure 20.

• HTTP POST /registry/ProcessorOrchestrator: registers a processor orchestrator. The

sequence diagram is similar to Figure 20.

• HTTP DELETE /registry/ProcessorOrchestrator/orchestratorId: unregisters a

processor orchestrator identified by orchestratorId. The sequence diagram is similar

to Figure 20.

Figure 20: Device registration Sequence diagrams: a) register and b) unregister

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 45

5.2.1.2 Registry repo

Device Registry Repo is the persistence layer of the Registry and exposes a CRUD (Create,

Read, Update, Delete) RESTful Web Interface.

Exposing its functionality as a REST Web Service, it defines the model entities as Resources

(represented as URLs) and allows CRUD actions through the HTTP’s GET, POST, PUT and

DELETE. The service invocation’s request and response payloads are represented as JSON

documents. These documents are actually the models described to the deliverable D3.3. The

resources that have been identified are:

• /registry-repo/ProcessorOrchestrator

• /registry-repo/ProcessorManifest

• /registry-repo/DataSourceDefinition

• /registry-repo/DataSourceManifest

• /registry-repo/DataKind

All these resources are kept in the Registry Repo Database.

The current implementation of the Asset Registry is based on Java Spring boot framework. The

database is H2. Each component (Device Registry service and Device Registry repo) is

packaged as a microservice by using Docker images.

5.2.2 Streaming Gateway

The scope of Streaming gateway is to receive requests from AAS and create streams from

message bus to AAS and vice versa. When a request, for consuming a property, arrives from

AAS to the Streaming Gateway component, the component executes the following tasks:

• Discovers the appropriate data source for the specific property. Every property is

presented as a data source definition and the data source discovery is achieved by

using the registry Interface. The registry interface returns the specific data source

manifest that produces the specific property.

• Creates a channel between the desired data source and AAS. In order to create a

channel, we need the start point of the channel which is represented by a DSM, the

channel type and the end point. Streaming gateway acts as the end point for AAS.

Finally, Streaming Gateway is proposed to support two types of channel: point to

point channel or publish subscribe channel.

• Streams messages from data source to the AAS internal interface.

5.2.3 Message Translating and routing Service

This component is responsible for supporting data steaming analytics. It is the core

component of the infrastructure which will enable the analytics will be defined in WP4. The

basic concept of the “Message Translating and Routing Service” is described in D3.3 and

depicted in the Figure 21.

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 46

Figure 21: Analytics data routing example

Message translating and Routing Service provides the following functionality:

• Configure and instantiate a data Processor based on a processor manifest. The data

processor is used to set up a data routing flow and to utilize analytics algorithms as

well.

• Configure and instantiate a Processor Orchestrator. In practise Processor orchestrator

is a combination of data processors which can execute more complex data flows such

this presented to the Figure 21.

Message Translating and Routing Service adopts many of messaging integration patterns and

extends the functionality supported by a message bus. It consists of a) a set of source

endpoints b) a set of destination endpoints c) a set of data processors and d) a management

interface (Figure 22).

Source endpoint

Data sources are registered in the asset registry and represented as topics to the message

bus. As mentioned above data sources are the logical representation of any asset on the CPS

which produces data (sensor, machine, analytics processor etc). Data source manifest (DSM)

is the instantiation of a data source. As source endpoints are defined the clients are capable

to connect the data sources with the data flows and described by the DI. For every new DI a

new client needs to be defined. To the first version of middleware infrastructure, a generic

“kafka channel adapter” is defined as a source endpoint.

Data processors

Data processors are the toolbox which will provide data analytics. The definition of processors

is part of the WP4. The scope of the middleware infrastructure is to provide a mechanism to

instantiate these processors. Each processor is defined by a processor definition and executes

a single data transformation/processing. As input receives a data stream and as a result

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 47

produces another data stream, which will be stored in a topic. Message Translating and

Routing Service creates the message channel which connect data sources with the processors

by providing their processor manifest.

Figure 22: Message Translating and Routing Service

Destination endpoint

The destination of the messages provided by the data flow can be either a topic on the

message bus which represents the result of analytics processors (and described by a DSM),

either the Streaming Gateway which acts as an endpoint for the AAS. As destination endpoints

are defined the clients are capable to connect the data flows with the destination of messages

and described by a DI. To this version of middleware infrastructure, two types of destination

endpoint are defined, a generic Kafka consumer as destination endpoint for analytics and the

Streaming Gateway component.

Management Interface

Finally, the management interface is the core component of the Message Translating and

Routing Service and is responsible for configuring and executing the data flows (Figure 24)

from one source endpoint to another destination endpoint through a data processor (Figure

25). Furthermore, provides the necessary functionality to create a complex scheme of data

flows based on a processor orchestrator. The functionality of Management Interface is

exposed through the following REST interface:

• HTTP POST /routing/processor: Creates and executes a data flow based on a

processor manifest (PM). The source endpoint of the data flow is chosen by the data

Source DSM, while the destination endpoint is defined by sink DSM. The sequence

diagram of all actions is depicted in Figure 23.

• HTTP DELETE /routing/ processor/processorId: Stops the data flow for the PM with

id= processorId.

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 48

• HTTP POST /routing/orchestrator: creates and executes an entire scheme of data

flows based on a processor orchestrator (PO).

• HTTP DELETE /routing/ orchestrator/orchestratorId: Stops all the data flows of a

specific scheme provided by the orchestrator with id= orchestratorId.

User Management Interface Data flow Registry Service Registry Repo

Message Translating and Routing Service Asset Registry

New PM request

Request for PM registration

Register to repo

Return compatible DSM

Response with compatible DSM

Select source endpoint for DSM

Select Processor for PM

Select destination endpoint for processor results

Instantiate data flow

result

Message1

Figure 23: Create a new data flow for analytics: sequence diagram

Figure 24: Execute a data flow

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 49

5.3 Prototype Implementation
To the current version of middleware infrastructure, are available the following components

of Data Streaming subsystem:

• Asset registry (registry service and registry repo)

• Message Translating and Routing Service

o Management Interface: Implemented the functionality of configuring and

instantiating an analytic processor.

o Source - destination endpoints: Implementation of Kafka producer - consumer

• Streaming Gateway

o Implemented a REST end point for receiving request- reply calls

5.3.1 Source Code Availability

The source code for Data Streaming subsystem, is placed at PROPHESY private GitHub

repository. The repository is named “DataStreaming” which is available at:

https://gitlab.com/prophesyEuH2020/DataStreaming. The latest version of the components

is under the “develop” branch.

5.3.2 Docker Availability

The spring boot applications “Registry - Service” and “Registry – Repo” are available as docker

images in:

• https://gitlab.com/prophesyEuH2020/DataStreaming/docker/registry-repo

• https://gitlab.com/prophesyEuH2020/DataStreaming/docker/registry-service

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 50

6 Use cases
The prototype implementation of the CPS middleware Infrastructure presented in this

deliverable will be validated in the work package WP6 (Complex Demonstrators Integration

and Validation), where all the PROPHESY components will be deployed in the two complex

pilot demonstrators.

In the current section, we provide a description of an example in the form of use cases that

could lead to the creation of test cases that will validate the operation of the middleware

infrastructure components. Each of these examples could be the basis of a single validation

scenario or be a part of a more complex validation scenarios.

6.1 Use Case#1: Request/Subscribe Sub-model
Actors 1. Asset Administration Shell

2. Data Streaming
3. Message Bus

Trigger An external request arrives to the AAS in order to consume a
specific sub-model.

Normal flow 1. The Management Interface of Message Translating and
Routing Service receives a request for instantiating a new
processor (PM)

2. The Management Interface
3. The Manifest sends back the details for the specific sub-

model.
4. The component Manager configures the data flow

between EI and Internal Interface (II).
5. Internal Interface pushes the request to Streaming

Getaway.
6. Streaming Getaway routes the request to the specific data

source through Message Translating & Routing Service
7. Message Translating & Routing Service gets the data and

translated to the specific data format

Precondition The external system is authorized

KPI Ν.Α.

Frequency Whenever a request arrives

Exception Not specified

Alternative flow Not specified

PROPHESY
components

AAS (Manifest, Component manager), Data Streaming (Streaming
Gateway – Asset Registry – Message Translating & Routing
Service) and Kafka Message Bus

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 51

The use cased is aimed to provide a generic and harmonized way to access physical assets.

This could improve the enterprise visibility as well as the usage of the data by external

applications and/or services. Two types of access are defined: request – response and publish

subscribe.

6.1.1 Narrative of Use Case: Data Flow Diagrams

6.1.1.1 Publish Subscribe Sub-model

Figure 25: Subscribe of a Sub-model

6.1.1.2 Request response Sub-model

Figure 26: Subscribe of a Sub-model

Subscribe
Submodel

1. Accept
Connection

Submodel Id

2. Lookup
Manifest

Manifest

3. Retrieve
Interface

Description

Manifest

5. Receive
Data from
the Asset

4. Configure
internal
Client/

Interface
(Subscribe)

6. Translate
Data into
Standard
Ontology

Asset

Requested
Submodel

Not
Authorized

Authorized Submodel
Matched

Internal Interface

The concerned Asset - depending
on the submodel - and property
could be:
• Sensing&Acting
• HFML

External
Interface

Not
Found

Request
Submodel

1. Accept
Connection

Submodel Id

2. Lookup
Manifest

Manifest

3. Retrieve
Interface

Description

Manifest

5. Get the
Data from
the Asset

4. Configure
Internal
Client/

Interface
(Request-

Reply)

6. Translate
Data into
Standard
Ontology

Asset

Requested
Submodel

Authorized Submodel
Matched

External
Interface

Internal Interface

The concerned Asset - depending
on the submodel - and property
could be:
• Sensing&Acting
• HFML
• Persistence

Not
Authorized

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 52

6.2 Use Case#2: Install a new Analytics Processor
Actors 1. Data Streaming

2. Message Bus

Trigger A new command for installing a new analytics processor.

Normal flow 1. The Management Interface of the Message Translating
and Routing Service receives a request for instantiating a
new processor (PM).

2. The Management Interface registers the Processor
Manifest to Asset Registry.

3. The Management Interface selects the appropriate client
for source endpoint (source DSM).

4. The Management Interface selects the appropriate client
for destination endpoint (sink DSM).

5. The Management Interface selects the appropriate
processor of the processor library.

6. The Management Interface configure the data flow.
7. The Message Translating and Routing Service start the data

flow which produces stream analytics and stores to the
specific topic of Message bus.

Precondition 1. Data source is active
2. Processor client is available

KPI Ν.Α.

Frequency Whenever a new data analytics installed

Exception Not specified

Alternative flow Not specified

PROPHESY
components

Data Streaming (Asset Registry – Message Translating & Routing
Service), Kafka Message Bus, analytics of WP4

 D3.7 – PROPHESY-CPS Middleware Infrastructure v1

Final – v1.0, 30/11/2018

Dissemination level: PU Page 53

7 References
[1] J. Kreps, N. Narkhede, J. Rao, and others, “Kafka: A distributed messaging system for log

processing,” 2011.

[2] A. Warsky, “Evaluating persistent, replicated message queues (updated w/ Kafka),” Blog

of Adam Warsky, Jul-2014. [Online]. Available:

http://www.warski.org/blog/2014/07/evaluating-persistent-replicated-message-

queues/. [Accessed: 20-Apr-2016].

[3] F. Pethig, O. Niggemann, and A. Walter, “Towards Industrie 4.0 compliant configuration

of condition monitoring services,” in 2017 IEEE 15th International Conference on

Industrial Informatics (INDIN), 2017, pp. 271–276.

[4] U. Epple, “Merkmale als Grundlage der Interoperabilität technischer Systeme,” Autom.

At, 2011.

[5] 2003, 2017 Gregor Hohpe, Bobby Woolf, “ Enterprise Integration Patterns -

Messaging Patterns Overview”

https://www.enterpriseintegrationpatterns.com/patterns/messaging/. [Accessed: 26-

Nov-2018].

[6] “Glossary.” [Online]. Available: https://www.plattform-

i40.de/I40/Navigation/EN/Service/Glossary/glossary.html. [Accessed: 01-Nov-2018]

[7] ZVEI, “Examples of the Asset Administration Shell for Industrie 4.0 Components – Basic

Part.” Apr-2017.

[8] Plattform Industrie 4.0, “Online Library,” Aug-2018. [Online]. Available:

https://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/vws-in-

detail-presentation.html. [Accessed: 02-Nov-2018].

[9] ERPANET, “ERPANET - erpaGuidance.” Sep-2003.

[10] “Spring docs”, https://docs.spring.io/spring-

integration/reference/html/overview.html, [Accessed: 26-Nov-2018].

[11] 2003, 2017 Gregor Hohpe, Bobby Woolf, “Enterprise Integration Patterns: messaging

patterns: Publish-subscribe channel,

https://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscrib

eChannel.html, [Accessed: 26-Nov-2018].

[12] 2003, 2017 Gregor Hohpe, Bobby Woolf, “Enterprise Integration Patterns: messaging

patterns: Message endpoint,

https://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageEndpoi

nt.html, [Accessed: 26-Nov-2018].

https://www.enterpriseintegrationpatterns.com/patterns/messaging/
https://docs.spring.io/spring-integration/reference/html/overview.html
https://docs.spring.io/spring-integration/reference/html/overview.html
https://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html
https://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html

